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In recent years, moinents and their uses have been investigated by mathematicians,
statisticians, and engineers. In 1987, the American Mathematical Society sponsored ashort
course on “Moments in Mathematies” at its meeting in San Antonio, Texas. This led to
a volume containing the six papers delivered there. The volume was published by the
Society i its Short Course Series as Volume 37 in its Procecdings of Symposia m Applicd
Muathematics.

Recently, Di. James Maar of the National Security Agency noted a nmunber of
problems in signal processing in which moments of distributions were important and yet
statisticians and signal processor scientists were unaware of what had been accomplished
by each other. He initiated discussions with Professor Peter Purdue of the Operations
Research Department of the Naval Postgraduate School and Professor Herbert Solomon of
the Statistics Department at Stanford University about developing a conference in which
moments and signal processing and their interaction would be featured. Professor Purdue
and Professor Solomon agreed to explore this idea and they developed and co-chaired a
Conference on Moments and Signal Processing which was held at the Naval Postgraduate
School on NMarch 30-31, 1992, The Proccedings herein resulted from that conference.

The Conference developed around eight speakers whose interests include moments
and statistics, signal processing, and interactions between the two. Professors Jerry Mendel
and Max Nikias came from the signal processing community; Professors Satish Iyengar and
Michael Stephens came from the statistical community. The remaining four, Professors
David Brillinger, Ken-Shin Lii, Bruce Lindsay, and Ed Wegnian, came at the subject in
different shadings emanating from the central core of the Conference.

The Conference was supported substantively by the National Security Agency
and partially by the Office of Naval Rescarch. Many thanks arc due to these agencies. A
number of government scientists from the Department of Defense and a limited number of
general community attendees participated in the Conference. This led to a lively audience
of 40 to 30 participants over the two day period.

It 1s hoped that the wi-le availability of the papers in this report will lead to more

commuunication between the two communities and of course within each group.




ADAPTIVE BLIND EQUALIZATION!

Yuanjie Chen and Chrysostomos L. Nikias

Department of Electrical Engineering - Systems
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1This work was supported in part by the Office of Naval Research under contract
N00014-92-J-1034 and the National Science under grant MIP-9206829




ABSTRACT

This tutorial paper is focused on two topics, namely: (i) to describe system-
atic methodologies for selecting nonlinear transformations for blind equal-
ization algorithms (and thus new types of cumulants), and (ii) to give an
overview of the existing blind equalization algorithms and point out their
strengths as well as weaknesses. It is shown in this paper that all blind
equalization algorithms belong in one of the following three categories, de-
pending where the nonlinear transformation is being applied on the data:
(i) the Bussgang algorithms, where the nonlinearity is in the output of the
adaptive equalization filter; (ii) the polyspectra (or Higher-Order Spectra)
algorithms, where the nonlinearity is in the input of the adaptive equal-
ization filter; and (iii) the algorithms where the nonlinearity is inside the
adaptive filter, ..., the nonlinear filter or neural network. We describe
methodologies for selecting nonlinear transformations based on various op-
timality criteria such as MSE or MAP. We illustrate that such existing al-
gorithms as Sato, Benveniste-Goursat, Godard or CMA, Stop-and-Go and
Donoho are indeed special cases of the Bussgang family of techniques when
the nonlinearity is memoryless. We present results that demonstrate the
polyspectra-based algorithms exhibit faster convergence rate than Bussgang
algorithms. However, this improved performance is at the expense of more
computations per iteration. We also show that blind equalizers based on
nonlinear filters or neural networks are more suited for channels that have
nonlinear distortions.

The Godard or CMA algorithm is probably the most widely used blind
equalizer in digital communications today due to its simplicity, low complex-
ity and constant modulus property. Its main drawbacks, however, are slow
convergence and no guarantee for global convergence starting from arbitrary
initial guess. We present a new method for blind equalization, the CRIMNO
algorithm (i.e., criterion with memory nonlinearity), which is shown to have
the same advantages as Godard (simplicity, low complexity, constant modu-
lus property) and yet guaranteeing much faster convergence. The CRIMNO
algorithm is flexible enough to address blind deconvolution problems when
the input sequence is colored.




1 INTRODUCTION

Blind deconvolution or equalization is a signal processing procedure that recovers the input
sequence applied to a linear time-invariant nonminimum phase system from its output only.
Blind equalization algorithms are essentially adaptive filtering algorithms designed in such a way
that they do not need the external supply of a desired response to generate the error signal in
the output of the adaptive filter. In other words, the adaptive algorithm is “blind” to the desired
response. However, the algorithm itself generates the desired response by applying a nonlinear
transformation on sequences involved in the adaptation process. All blind equalization algorithms
belong to one of the following three categories, depending where the nonlinear transformation is

being applied on the data:

o The Bussgang algorithms, where the nonlinearity is in the output of the adaptive equal-

ization filter;

e The Polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the

input of the adaptive equalization filter;

e The algorithms where the nonlinearity is inside the adaptive filter; i.e., the filter is non-

linear (e.g. Volterra) or neural network.

The purpose of this paper is to provide an overview of the existing blind equalization algo-
rithms and to discuss their advantages and limitations. Conventionai equalization and carrier
recovery techniques used in multilevel digital communication systems usually require an initial
training period, during which a known data sequence (i.e., training sequence) is transmitted [43],
[45]. An alternative effective approach to this problem is to utilize blind equalizers which do not

require any known training sequence during the startup period.




The paper describes systematic methodologies for selecting the nonlinearity based on various
optimality criteria, such as maximum likelihood (ML), mean-square error (MSE) or maximum
a posteriori (MAP). As an example, it is illustrated that such existing algorithms as Sato [46],
[47] Benveniste-Goursat [5], [6] Godard or CMA {22], [50] and Stop-and-Go [41] are indeed spe-
cial cases of the family of Bussgang techniques where the nonlinearity is memoryless [3], [4]. It
is demonstrated that the polyspectra-based algorithms exhibit faster convergence rate than the
Bussgang algorithms. However, this improved performance is at the expense of more computa-
tional complexity. On the other hand, blind equalizers based on nonlinear filters are well suited
for channels that have nonlinear distortions [39], [40].

The Godard algorithm is probably the most widely used blind equalizer in digital communica-
tions today due to its simplicity, low computational complexity, and constant modulus property.
Its main drawbacks, however, is slow convergence and no guarantee for global convergence (con-
vergence starting from arbitrary initial guess). The paper describes the development of the
CRIMNO algorithm (i.e., criterion with memory nonlinearity) which is shown to have the same
advantages as Godard algorithm (simplicity, low complexity, constant modulus property) and yet
guaranteeing much faster convergence [12], [13]. Extension of the CRIMNO algorithm to the case
of colored input signals is also presented.

The polyspectra-based adaptive blind equalization algorithms are also described in the pa-
per. In particular, the Tricepstrum Equalization Algorithm (TEA) [24], the Power Cepstrum
and Tricoherence Equalization Algorithm (POTEA) [7], and the Cross-Tricepstrum Equalization
Algorithm (CTEA) [8] are presented, as well as their advantages and limitations. It is shown
that these algorithms perform simultaneous identification and equalization of a nonminimum

phase communication channel from its output only. Simulations with PAM and QAM signals




demonstrate the effectiveness of the polyspectra-based algorithms.
Finally, the paper provides an overview of the neural network based adaptive equalization

algorithms either with or without a training sequence [11], [20}, [26], [27], [39], [40], [49].

2 DEFINITION OF BLIND EQUALIZATION PROBLEM

Let us consider the discrete-time linear transmission channel whose impulse response {f(i)} is
unknown and possibly time-varying. The input data {z(i)} are assumed to be independent and
identicaily distributed (i.i.d.) random variables, with non-Gaussian probability density function.
Let us also assume, without loss of generality, that the sequence {z(¢)} has mean E{z(¢)} = 0
and variance E{|z(i)]*} = Q.. If z(i) is real, we may drop the magnitude function and simply
write E{z%(i)}. Initially, noise is not taken into account in the output of the channel. From

Figure 2.1, it follows that the model we consider is

!

¥(4) fG@) + =2(8)

3 (k) 2(i - k) (2.1)
k

where “+” denotes linear convolution and {y(2)} is the received sequence. The problem is to recon-
struct (or restore) the input sequence {z(i)} from the received sequence {y(i)} or, equivalently,
to identify the inverse filter (equalizer) {u(¢)} for the channel.

From Figure 2.1, we see that the output sequence {#(7)} of the equalizer is given by

() = u(@) * y(i)




u(i) * (f(3) * z(2))

it

u(i) = f(1) * z(7).

So, to achieve

. #(i) = z(i- D)e”’

where D is a constant delay and 6 is a constant phase shift, it is required that

u(i) = f(i) = §(: = D)

where

(1)(e?), i=0
8(i) =

0, otherwise.

Performing the Fourier transform on (2.4), we obtain

(8—-wl)
¢’ .

U(w)- F(w) =

In other words, the objective of the equalizer is to achieve a transfer function

1 j(6-wD)

F(w)

U(w) =

In general, D and @ are unknown. However, the constant delay D does not affect the reconstruc-

tion of the original input sequence {z(i)}. The constant phase shift # can be removed by a carry

Blind equalization schemes may be classified into three categories; i.e., those which utilize

recovery technique. As such, in the sequel, it will be assumed that D = 0 and § = 0.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)




nonlinearities in the output of the adaptive equalization filter, those which place the nonlinearity
in the input of the adaptive equalization filter, and those which utilize adaptive nonlinear equaal-
ization filters. The Bussgang equalization algorithms with memoryless or memory nonlinearity
belong to the first category whereas the higher-order cumulant-based equalizers (TEA, POTEA,
etc.) belong to the second category, as they perform memory nonlinear transformation on the
input data of the equalization filter. Blind equalizers based on nonlinear filters, such as the
Volterra filter or neural retworks, belong to the third category. Figures 2.2 (a)-(c) illustrate the

block diagrams of the aforementioned three families of blind equalizers.

3 PERFORMANCE MEASURES FOR ALGORITHM EVAL-

UATION

Four different performance measures are usually considered in simulation experiments for the
testing of the blind equalization algorithms: the time-average squared error (E5 gy ), the tran-
sitional symbol error rate (SER), the residual intersymbol interference (ISI) and the discrete eye
patterns [43], [44]. They are defined as follows.

Time-Average Squared Error(Ejgp or MSE)

At iteration (i), the mean square error in the output of the equalizer is defined as :

N
EasE = 7 3 le(i - D)~ 2()[? (3.0)

i=1

where (i) is the output of the equalizer at iteration (i) and z(z — D) is the corresponding true
value. Note that the delay D, which is introduced by the channel and the equalizer, does not

affect the recovery of the original information {z(¢)}. However, it must be taken into account in




the calculation of MSE (¢). The MSL (¢) gives a measure of both the noise and residual ISI at
the output of the equalizer.

Transitional Symbol Error Rate (SER)

The SER indicates the percentage of wrongly detected symbols in consecutive intervals of 500

symbols, i.e.,

#of wrong detections in 500 symbols

SER =
R 500

(3.2)

Residual ISI
The residual ISIin the output of equalizer is defined as follows. Let { f(i)} be the channel impulse
response and {u(i)} the equalizer tap coefficients at iteration (7). Let s(¢) = f(i)* u(7), then

i [s(3)[? ~ max{]s(:)|} (3.3)

ISI(i) = max{]s(i)|2}

Physically, this indicates the amount of ISI present at the output of the equalizer due to imperfect
equalization.
Discrete eye patterns
Discrete eye patterns (or equalized signal constellation) consist of all possible values of the output
of the equalizer, #(), at iteration (i), drawn in two-dimensional space. We say that the
eyve pattern is open whenever the ideal decoding thresholds are easily distinguishable between
neighboring equalized states.

In our simulations, all performance measures were calculated for many independent signal
and noise realizations. For the E, gp, time averaging over 100 samples were performed for each

realization. The eye pattern at iteration (i) was obtained by drawing the output of equalizer for all




independent realizations and for a specific number of samples (for each realization) symmetrically

located around (z).

4 ALGORITHMS WITH NONLINEARITY IN THE OUT-

PUT OF THE EQUALIZATION FILTER

Let us assume that a guess for the impulse response of the inverse filter (equalizer), u,(¢) has

been selected. Then,

u,(i) * (i) = 8(i) + (i) (4.1)

where €(i) accounts for the difference (error) between our guess u,(i) and the actual values of
u(). If we convolve the initial guess of the inverse filter, {uy(i)}, with the received sequence,

{y(4)}, we obtain

i) = u(i) * u(d)

= z(i) * f(i) * u,(i). (4.2)

Combining (4.2) with(4.1), we obtain

g = z(i) * (6(3) + (7))

[2(3) * 8()] + [2() * €(¥)]

i

z(i) + n(i) (4.3)

10




where

n(t) = z(i) * €(7) (4.4)

is the “convolutional noise”, namely, the residual ISI arising from the difference between our
guess u4(7) and the actual inverse filter u(z).

Our problem now is to utilize the deconvolved sequence {Z(¢)} to find the “best” estimate of
{Z(1)}; namely, {d(i)}. Note that in adaptive-filter literature d(¢) is used to represent the desired
response [25]. Two criteria are employed to determine the “best” estimate of z(:) from the given
Z(1) . These are the ;r\xean-square error (MSE) and maximum a posteriori (MAP).

Since the transmitted sequence z(¢) has a non-Gaussian probability density function, the MSE

and MAP estimates are nonlinear transformations of #(7). In general, the “best” estimate d(i) is

given by [3], [4], [23], [54].

d(i) = ¢[£(¢)]  (memoryless)

or

d(i) = g[z(i),%{(i - 1),...,Z(i—m)] (mth — order memory) (4.5)

where g[-] is a nonlinear function with or without memory. The d(¢) is fed back into the adaptive
equalization filter as shown in Figure 4.1. From this figure, it is also apparent that the nonlinear

function g[] is in the output of the equalization filter.

4.1 Optimum Selection of Nonlinearities

4.1.1 Nonlinearities with MSE Estimates

In summary, a well treated classical estimation problem is as follows:

11




i(i) = z(i) + n(i) (4.6)

where

(1) n(:) is Gaussian. Note that if () in (4.4) is long enough, the central limit theorem makes

the Gaussianity assumption for n(7) reasonable.

(ii) {z(i)} are independent, identically distributed (i.i.d.) and in general non-Gaussian. The
pdfof z(i) is known; in digital communications the {z(i)} are usually equi-probable discrete

signal points.

(iii) z(¢) and n(i) are assumed independent.

Given the Z(#), we seek the MSE estimate of z(¢), namely, dmse(?).

From Van Trees [52, p. 58], it follows that the best MSE estimate of {z(i)} given {Z(i)} is

the mean of the a posteriori density, i.e.,

+00
/ dz zP;/:(z/%)

[

deE(i)

E{a(i)/2(i)}. (4.7)

where P,z (z/%) = i *‘;{’2'}’:’(2) is the a posteriori density; Py z(z/%) is Gaussian, N (z(i), Qn),
with @, being the variance of {n(i)}; the a priori density P.(z) is the pdf of (i), aad Py/z(Z)
hehaves as a normalization constant in the integral of (4.7).

If 7(i) is zeto-mean Gaussian with variance Qz; i.e., P(z) is N(0,Q;), (4.7) reduces to

12




Q:

fmeelt) = Govan

(1) (4.8)

which. in turn, implies that g[Z(¢)] is a linear function. However, when P;(z) is non-Gaussian,
the integral (4.7) can not be reduced to a simple expression and g[-] will be a nonlinear function.
In the sequel, we show dmse(z) versus Z(i) when pdf P;(z) is uniform and Laplace.

Uniform Distribution

The a priori pdf is given by

& =A<z<A

Pyz) = { (4.9)

0, otherwise.

Consequently, the a posteriori pdf takes the form

Pyz(z/2) = o (4.10)
o, otherwise.

where

_ z)2
st = i[O

Bi(3) = /_Al Ay(z)dz.

Substituting (4.10) into (4.7), we obtain dmse(?) as a function of Z. However, this relationship is

not easy to express analytically and is obtained by numerical integration as shown in Figure 4.2.

13




Laplace Distribution
The a priori density is given by

Pr(z) = %exp[—)\lxl] (4.11)

and thus the a posteriori density takes the form

Pryz(z/2) = éé%i—) (4.12)

where

(z - %)

1
,/27r7§,;e"p[— 20,

Ax(z,z2) = %-exp [—Alxl-

By(3) = [_;wAg(z)dz.

Combining (4.12) with (4.7) and using numerical integration we obtain dmse vs £ as shown in

Figure 4.3.

4.1.2 Nonlinearities with MAP Estimates

In this section we treat the estimation problem

#(i) = z(i) + n(i)

where n(i) is Gaussian and z(?) is i.i.d. non-Gaussian. However, we seek MAP estimate of z(),

namely dmap(:) when n(7) is white or colored, or correlated with z(i). The colored noise case,

14




as well as the case of correlated noise with z(7), will result into a memory nonlinear relationship
between dmap and £(¢): e, dmap(d) = g[2(:), 2(i = 1),...,2(i = m)]. If z(7) is Gaussian 1.i.d.
and n(!) is white Gaussian, independent from z(?), then the dmap(i) is identical to dmse(i) and
is given by (4.3).

If we denote £ = [x(i),2(i—1),...,z(1)] and £ = [Z(¢),Z(i — 1),...,#(1)], then a posteriori

pdf is given by Van Trees [p. 58]

Py(z) - Py/(Z/2)
P(Z)

P:z/2) = (4.13)

and the MAP estimate, dipap. of 2 given I is the value of z which maximizes ¢(z), where

{z) = Pz (2/z)+ (nPr(z). (4.14)

where the denominator of (4.13) does not contribute to the maximization of £(z).

CASE I: White Gaussian Noise

In this case the n(:) is white, Gaussian N(0,Q,), and independent of z(i). It is also assumed
that {z(7)} are i...d. and non-Gaussian. Consequently, joint pdfs are expressed as products of

marginal pdfs and the MAP estimate at each iteration {i}, dmap(¢), is obtained by maximizing

(z(i)) = nPyy(3/2)+ tnPy(2).

That is to say that the estimation problem is decoupled and the resulting relationship
dmapl{t) vs (1), is memoryless.

The following memoryless nonlinearities can be derived.

15




(1) Uniform Distribution (.1.9)

dimap(t) = ¢ i), =A< EI) <A (4.15)
{ /\, j'(l) > A

Note that dyap does not depend ou Q,,.

(it) Laplace Distribution (4.11)

F(O) 4+ NQy,, (1) < -AQ,

dmap(i) = ¢ o, -AQ, < #(i) < AQ, (1.16)

L i(l) - ’\Qni j(l) > ’\Qn'

Here the MAP estimate depends on Q,,. For the symmetric uniform and Laplace a priori distri-
butions the resulting a posteriori pdf, Py, (2/z), is asymmetric.
Figures 4.4 and 4.5 illustrate the MAP memoryless nonlinearities.

CASE II: Colored Gaussian Noise

In this case we assume that n(/) is colored Gaussian N (0, ) where R is m x m correlation

matrix. On the other hand, {n(i)}. Based on these assumptions, the numerator of (4.13) is

Pg(.{) : P,i;/;(si/;!) = ﬁ P:(z(i))] ’ Pﬂg(i/l) (4.17)

=1

W h(‘i‘(‘

7

Pyeti/s) = (57) o0 |38 - 27 B - o)

16




and

"

I Fet=)) = [Px(a)™

1=1

. For mathematical tractability, we consider the case m = 2 and derive the memory nonlinear

relationships dynap(d) vs &

For m = 2 the correlation matrix takes

.E.ZQn'

For simplicity, we also define the following

=)
a:l\ A
Y

(1) Uniform Distribution (4.9)

Maximizing (4.17) is equivalent here

with the restrictions -\ < z7 < A,

the form

1
, el < 1. (4.18)
p 1
vectors

z(1) .
\ E(i-1) )
()
W =z. (4.19)
\ z(i—1) /
to minimizing
(Z-z)TRY(2-2) (4.20)

~A < z2 € A. Hence, we seek a point in the area

Xy ={(z1,22) : =2 <1y <\, =X <z; < A} such that J is minimized. Differentiating J

17




with respect to ry and ry and setting the derivative to zero we obtain

i
=

(£y = 1) = plEz — x2)

(4.21)

I
e

(F2 — x2) = p(£y — &)

From (-1.21), it is apparent that if Fc Xy, thatis =A< z; < Aand -A < 3, < A, then

dimap Iy o
dymap = = for reX, (1.22)

damap I

when # s outside X, the minimum is achieved on the boundary of X,. That is

dimap = k-A-sga[f] + (1= K)fe[21 — p(22 — Asgn[Z2))]
dymap = (1- k) - A-sgn[iy] + k- fe[z2 — p(21 — Asgn[Z1])]
for £ /X, (4.23)
where '
A, > A
fl@) = ¢z, |z] <A (4.24)
. -A, < =)

(ii) Laplace Distribution (4.11)

To obtain the MAP estimate is equivalent to minimize

J = Azi] + Alaa] + %[(i -2)TR Yz - 2)). (4.25)

18




The necessary conditions are

Asgn[zy] + ¢(zy — £1) —cp(z2—32) = O

Asgn[zo] + c(z2 — £2) — cp(z1 — £1)

Il
e

(4.26)

where ¢ = -Q—:-(%_—;,—). Clearly, (4.26) is a nonlinear system of equations. Two special cases

are the following:

1) when —A/c < £y — pZq, %2 — pE1 < A/c, then dimap = 0, and 2)

when p = 0, the problem reduces to the case of white Gaussian noise.

4.2 The Bussgang Algorithms

Fig. 4.1 illustrates the Bussgang adaptive blind equalization algorithms when an LMS type or

stochastic gradient algorithm [53] is used for the adaptation of the equalizer coefficients, and the

nonlinearity g(*[-] is memoryless [3], [4], [23]. The following equations, consistent with the block

diagram of Fig. 4.1, describe the Bussgang family of algorithms:

(1)

u(i+1)

[ur(3), - .., un(i)]T
[0,...,1,...,07

(@), y(i- N+ DJT
0,1,2,...

uH(d)y(d)

9] = gW M ()y(d)]
d(i) - (i)

u(i) + py(i) - e(i)

equalizer taps
initial tap values
input to the equalizer block of data
iteration index
(4.27)
equalizer output or reconstructed sequence
output of nonlinearity

error sequence

LMS-type adaptation
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4.2.1 Convergence Rate and Properties

From (4.27) and Figure 4.1, it is apparent that the output sequence of the nonlinear fuartion,
d(i). “plays the role” of the desired response or the training sequence. It is also
apparent that the Bussgang technique is simple to implement and understand, and it may be
viewed as a minor modification of the original LMS algorithm (the desired response of the original
LMS adaptation is a memoryless transformation of the transversal filter output). As such, it is
expected that the technique will have convergence that will depend on the eigenvalue spread of
the autocorrelation matrix of the received data {y(i)}.

From (4.27), the LMS adaptation equation for the equalizer coefficients is given by
w(i+1) = i)+ uy(i) e i) (4.28)
If we obtain the expected value (ensemble averaging) of (4.28), we have

E{u(i+ 1} = E{u(@)}+uE {y() (s[5 - 3°(9)) }

= E{u@®}+uE {y()gVE6)]} - wE{y()Z (). (4.29)
The adaptive algorithm converges in the mean when
E{y(eVED]} = E{y)z"() (equilibrium)
and it converges in the mean-square when
E{u"(i)y()gE@D]} = E{u" (O ()
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E{a)g G} = E{E@E())- (4.30)

Phus. it is cequired that the equalizer output #({) be Bussgang at equilibrium.
Note that identity (4.30) states that the autocorrelation of Z(¢) (right-hand side) equals the
crass correlatinon between £(7) and a nonlinear transformation of £(#) (left-hand side).' Processes
which =atisfy property (4.\30) are said to be Bussgang [10]. In summary, the adaptive Bussgang
tectigques converge when the equalizer output sequence, {£(i)}, becomes Bussgang (nccessary
condition).

A stochastic gradient algorithm (steepest descent) essentially minimizes iteratively a perfor-
dranere index J() = E{G[E()]} with respect to the equalizer coefficients u(¢). A more general

L of the equalizer taps adaptation equation (4.28) is [25]

a(i+1) = u(i) — 4V J (i) (4.31)

where V,J() is the gradient of J(i). Differentiating J(i) by using the composite function rule,

wit abtain

Vi d (1) ~E{V[2(2)] - V:[G(E(:))]}

= —B{y(i)- VLGEDN) (4.32)

i3 dropping the expectation operation, f.c., by using a single-point unbiased estimate,

we abtadn
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Vud(i) = —y(i)er(d) (4.23)
where

(1) = Vg[G(a(i)))

= gW[E()] - () (4.34)

Fanation (4.3.4) shows the relationship between the nonlinear function g(9] used in the Bussgang
Techniques with the nonlinear cost function G[:] which defines the performance index, J[-).
Example for one dimensional modulation (PAM)

The first blind equalization algorithm was introduced by Sato in 1975 [47] for PAM signals. He

chose the simple nonlinear funetion
9(%) = vsgnlz] (4.35)
where 4 15 a gaiu parameter which must be chosen to satisly the Bussgang property (4.30) i.c.,
E{&(i) - yepn[2(1)]} = E{1#(i)"}

Or

v = E{#(OP) /B{I#)]). (4.20)



We could also write Sato’s algorithm in terms of

G(%) = =% — ~|| (4.37)

¢

[\

4.2.2 Extension to QAM modulation

The extension of Bussgang algorithms to two-dimensional constellations (QAM) is somewhat
straightforward (3], [4]. In the case of two independent quadrature carriers, the conditional
mean estimate of an equivalent complex transmitted symbol z given the complex observation

¥ = &£ + jT; can be written as
d = E{z [z} - g[ZRr] + jg[Z1]. (4.38)

We keep the notation simple by omitting (z). For example, the Sato nonlinearity for QAM signals

takes the form [47].

9(%) = ycsgn(Z) = y{sgn[Zg] + j sgn[2]}. (4.39)

It is clear that real and imaginary parts of the data can be estimated separately. The complex

data equivalent of the adaptive Bussgang Techniques is described in (4.27), but with

PRIEOIEFLENG ES PRI O (4.40)

Consequently, the error sequence is

e(i) = {gEr(3)] - 2r()} + 7 {9VE1(D)] - 2.1(3)}.- (4.41)
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For example, the "Stop-and-Go” algorithm introduced by Picchi and Prati (41] is an adaptive

Bussgang technique with the following nonlinearity

ol3(i)] = i(i)+%Ai~(i)—%A:E(i)

1. . ..,. 1_..,.
+§B.’L‘ (2)—- EB(C (l) (4.42)

where Z(%) is defined as the quantizer (slicer) output in Figure 4.1 and (A, B) is a pair of integers
taking values (2,0) or (1,1) or (1,—1) or (0,0). The values of (A, B) are generally different at
each iteration, and how they are chosen is described later in this section.

Another example of a Bussgang technique is the heuristic modification of the Sato algo-
rithm suggested by Benveniste and Goursat [5], [6]. In this case, the nonlinear function takes the

form

glE(i)] = &()+ k(i) - kid(i) +

ka|2(i) — Z(7)] - [yesgn[Z(i)] - £(3)]

gl3()] = #() +|2(i) — #(3)]  {keI2TBED-2)y

kz[yesgn[£(1)] - £(i)]} (4.43)
where k,, k, are constants. From (4.38) we observe that the Benveniste-Goursat error function

24




may be seen as a weighted sum of the Decision Directed (DD) [43] and Sato errors. On the
other hand the “Stop-and-Go™ error function (4.37) is the weighted sum of the DD error and
its conjugate. The weights of the two algorithms, however, are chosen in a completely different

manner.

4.2.3 Unknown Carrier Phase: The Constant Modulus Property

Equation (4.33) can be written in polar coordinates as
d = E{:z: [3} =rel?. (4.44)

[f we assume that all rotated constellations are equally likely, since the carrier phase is

unknown, then the conditional mean d in (4.39) has the same argument as Z, and is given by

d = §[|z]] - &7 278D (4.45)

where (-] is a nonlinear function and |Z| = /Z% + %%, arg(Z) = arctan[%;/Zg]. Combining (4.39)

with (4.40) we obtain [3], [4], [23]

e(i) = d(i)- (i)

= §llE(i)|)e? =D - z(i)

N (G

Hence. the error term is independent of any fixed phase rotation of the signal constellation.

Equation (4.27) also represents the Bussgang technique for the case of unknown carrier phase,
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provided we substitute e(¢) in (4.27) by e(i) of (4.41).
Example: The Godard (or CMA) Algorithm [22], {50]
Under the assumption that all rotated constellations are equally likely, Godard [22] suggested

that §{|#|] in (4.41) be chosen as
glizll = &+ RylzP~! - |z**~! (4.47)

where R, is a real constant. As we shall see this form has some very nice properties. Special
cases of (4.42) include

gliEll = (L+ Ra)lE| ~ 2P (p=2)

and

olizl) = B (p=1).

The parameter R, is a gain constant which has to be chosen according to (4.30). Since

glz(d) = f—lﬁ-[(—ls%ﬂﬂ (4.48)

combining (4.43) with (4 30), we obtain
E{)z()|* + Rpl2()IF ~ |2()1} = E{|Z()"}

or

_ E{1z()7} \
R, = E0F) (4.49)
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At perfect equalization, &(i) = z(i)e’? (assuming time delay D = 0), and thus
R, = —=, where m, = E{|z(:){"}.
Combining (4.34) and 4.43), we obtain the Godard performance index nonlinearity, namely,
GE) = (&P - By) (4:50)

Fig. 4.6 summarizes the nonlinear functions of the Bussgang iterative techniques.

4.2.4 The Sato and Benveniste-Goursat Algorithms

Sato [46] introduced the first blind equalization scheme in 1975 by introducing the sign non-
linearity to generate the desired response of the adaptive scheme shown in Figure 4.1, i.e.,
d(i) = v sgn [Z(¢)]. In 1986, Sato [47] extended his 1-D PAM algorithm to the multidimensional
blind equalization problem where all transmitted signals become vector processes and all impulse
responses (channel and equalizer) are square matrices. The extension, however, is straightfor-
ward. For example, in the two-dimensional case of QAM signals the “sign” nonlinearity becomes

the “complex sign” defined by (4.34). The error signal of the Sato algorithm

ex(i) = 7 cgn [3(i)] - £(3) (4.51)

is very noisy around the solution unless the transmitted sequence z(i) takes only the values +1.
In other words, although e,(?) is zero-mean at the solution, it has a large variance. On the other
hand, the Decision Directed (DD) error signal ep(i) = £(i)—£(¢) ( see Figure 4.6) [33], though not

robost for blind equalizers, enjoys the property of being identically zero at the solution. Hence,
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Benveniste-Goursat [5] suggested the idea of combining (heuristically) both error signals in the

form of a weighted averaging as follows

enc(t) = k1 ep(i) + k3 es(3) lep(d)| (4.52)

where kj,k; are constants. The rationale behind the error expression (4.47) is the following.
Before the eye of the equalizer opens, |ep(i)] is large and thus the Sato error es(i) contributes to
the proper direction. At the opening of the eye and thereafter |ep(i)| becomes small and the DD
mode of the error egg(t) takes over to speed up convergence and to achieve faster rate than the
original Sato algorithm with eg(i). It is no wonder, therefore, that in our simulation experience
we have seen the Benveniste-Goursat (BG) algorithm exhibiting initially very slow convergence.

A faster convergence rate has been observed only after the eye opens. The Benveniste-Goursat
algorithm may be seen as the Sato algorithm that switches automatically to a DD one when the
eye of the equalizer opens. The extension of the Benveniste-Goursat algorithm to a Decision

Feedback Equalization (DFE) implementation (2] was given by Macchi et al. [32].

4.2.5 The Godard and Donoho (or Shalvi-Weinstein) Algorithms

The basic motivation behind the development of Godard’s algorithm introduced in 1980 [22] was
to find a cost function that characterizes the amount of ISI at the equalizer output independently
of the carrier phase. Since the input sequence z(i) is i.i.d., the cost function that satisfies the

aforementioned conditions is

J® = E{(12()P-1=()P)}, (4.53)
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which depends on the input sequence, For p = 2, and ¢ = 2, J(?) takes the form
JO = E{z()* + |=(i)]* - 2(2()*=()|*} (4.54)

where we assume that E{z%(i)} = 0. However, (4.48) or (4.49) can not be used in practice because
{z(i)} is inaccessible. To avoid this difficulty, Godard [22] suggested the use of a dispersion

function

D® = E{(|z(i)P - Rp)'} (4.55)

which was shown to behave like the cost function J®) and yet it is independent of the input
sequence. Note that R, is defined by (4.44). Assuming p = 2, ¢ = 2, (4.49) and (4.50) can be

written as [22]

J@ = J1+ J2+

{aE{l2()PD? - LSO - 2 B{Ie(i)*D?} - 3o IF (k)PP (4.56)
k
and

DB =1y + I+

{4(E{=()P))? - 1F () = 2E{l()I'}} - {Z |f(k)? + B} - E{Iz(i)l‘}} (4.57)
k

where Y} is taken for k # 0 and

ho= E{le(@)I*} (1= 1£0)") + E{lz(D)*}- 2 IF(RIY,
k
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’ 2 ’
Jy = '.’(b‘{lr(t)l"})"-{(Zlf(k)l‘) —Zlf(k)l‘}- (4.58)
k k

Comparing (4.51) with (4.52), we see that for D(*) to be similar to J(?) | the following inequality
must be satisfied:

HE{z(DPD? A0 = 2E{]=()|'} > 0

or
E{jz()]'}

NE(=DPE (4:59)

|£(0)? >

Godard suggests (4.53) and f(i) = 0 for i # 0 as a way of initializing his algorithm.

Based on what has been reported in literature [50] and on our simulation experience, the
Godard algorithm has always converged to a minimum that opens the eye when Godard’s initial-
ization procedure is being followed. The Godard algorithm is summarized in (4.27) and Fig. 4.6.
Its convergence for p = 2 is better than p = 1. In addition, Godard noted that convergence im-
proves when the step size u is divided by 2 at each 10,000 iterations {22]. The Constant Modulus
Algorithm (CMA), suggested independently by Treichler and Agee in 1983 [50], is the Godard
algorithm for p = 2 and R; = 1. Ding et al. [15] reported that the Godard-type algorithms
exhibit local (not global) undesirable minima.

Shalvi and Weinstein recently introduced [48] a blind equalization scheme based on the idea of
matching the kurtosis measures between the transmitted sequence {z(i)} and the reconstructed
sequence {£(t)} at the output of the equalizer. The kurtosis of the input complex sequence z(i),

is defined by

R(z(i)) = E{lz()I'} - 2E}{|z()*} - |E{=*(i)[})? (4.60)
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which is zero for complex Gaussian random variables. The important point made in [48] is that
if E{2()1°} = E{Jz()*}, then (1) [K(2()] < K (z(0))] and (2) [K(2()] = |K(z(2))| if
perfect equalization is achieved. Thus, the problem is to maximize the magnitude of the kurtosis
measure |A'(Z(¢))| in the output of the equalizer at each iteration subject to the constraint
E{|£()*} = E{|z(:)|?}. One of the special cases of the Shalvi-Weinstein algorithm is the original
Godard algorithm. It has recently been recently reported that the Shalvi-Weinstein algorithm was
originally introduced by Donoho [16] for real-valued signals and that the algorithm’s convergence

is only guaranteed for infinite-length equalization filters.

4.2.6 The Stop-and-Go and Decision-Directed Algorithms

The basic idea behind the Stop-and-Go algorithm, which was proposed by Picchi and Prati
[41] in 1987, is to retain the advantages of simplicity and fast convergence (in open eye-pattern
conditions) of the Decision directed (DD) algorithm [33] while attempting to improve its blind
convergence capabilities.

The adaptation error ep(i) used in the DD algorithm is [33]

ep(i) = (i) — (i) (4.61)

where (1) is the output of the equalizer and Z(7) the output of the threshold detector. Assuming
that the equalizer initial tap setting corresponds to a closed eye-pattern, ep(i) will be large most
of the time due to the large number of incorrect decisions Z(¢). Consequently, the DD algorithm
cannot converge in closed eye-pattern conditions.

In the Stop-and-Go algorithm, Picchi and Prati proposed the use of the error sequence
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e(i) = 3{A(en() + B(i)ep()) (4.62)
where .
A(i) = Igr(3d) + 11(3)
B(i) = Ig(i) - Ii(3)

and
' Jl, if sgnlep(i)]r = sgnles(i)]r
Ir(i) =

0, otherwise

It = | 1, if sgnlep(i)]s = sgnles(i)]s

0, otherwise.

Note that es(i) is the Sato error given by (4.46).

From the foregoing, it is clear that the Stop-and-Go algorithm is essentially the DD algorithm
when the eye is open. It is mostly during closed eye-pattern conditions that the Stop-and-
Go adaptation rule takes place. Also, it is clear that the Benveniste-Goursat and Stop-and-
Go algorithms have different convergence properties when the eye-pattern is closed and similar
convergence properties when the eye is open. The modifications of this algorithms have been
proposed to incorporate joint equalization and carrier recovery, decision feedback equalization (1]

as well as fractionally spaced equalization [21], [45].
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4.3 The CRIMNO Algorithm

Although the Bussgang algorithms are different from each other, as we have seen, they perform
only memoryless nonlinear transformations on the equalizer outputs to generate the desired re-
sponse. This, in turn, implies that the cost functions they attempt to minimize with respect
to the equalizer coefficients are also memoryless. These algorithms do not explicitly employ the
fact that the transmitted data are statistically independent, which is the essence of the new crite-
rion we introduce in this section. Since statistical independence of the transmitted data involves
more than one data symbols, this results in a memory nonlinear transformation on the equalizer

outputs and thus a memory nonlinear cost function.

4.3.1 Criterion with Memory Nonlinearity

As we have seen, Godard solves the blind equalization problem by proposing a cost function
which is independent of the transmitted data, and yet reaches its global minimum at perfect
equalization. The Godard cost function ( also known as the constant modulus algorithm (CMA)
[22] is given by (4.50) and (4.44).

Note that only the expected value of some function of the current equalizer output appears
in Godard’s cost function. Therefore, the Godard criterion only makes use of the probability
distribution of the transmitted data. It does not explicitly use the fact that the transmitted data
are statistically independent.

Assume that perfect equalization is achievable and consider the situation where perfect equal-

ization has indeed been achieved. That is

#(i) = z(i - D)
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where d is some positive number, which accounts for the delay. Since the transmitted data
z(1) are statistically independent from each other, so are the equalizer outputs (i) at perfect
equalization. In addition, for most transmitted data constellations, the mean of transmitted data

z(1) is zero. Therefore, at perfect equalization , we have

E{#(i)z"(i— 1)} = E{a(i - D)a"(i =1 ~ D)} = E{z(i— D)}- E{z*(i—l - D)} = 0

By making use of this property and combining it with Godard’s cri.erion, we cbtain a new
criterion, called criterion with . "mory nonlinearity (CRIMNO), which is the minimization of the

following cost function:

M®) = woE (|2(i)|P — Rp)® + w1 |E{2()2°(i = D} + - + wum| E{Z(i)2"(i - M)}*. (4.63)

The rationale behind the CRIMNO is that since each term reaches its global minimum at
perfect equalization, by appropriately combining them, we can increase the convergence speed of
the corresponding CRIMNO algorithm [12], [13]. This is clearly demonstrated in the simulations
section.

Remarks:

1. Memory nonlinearity: the CRIMNO cost function depends not only on the current equalizer
output, but also on the previous equalizer outputs. As such, it results to a criterion with

memory nonlinearity. The parameter M determines the size of memory.

2. Generalization of the Godard criterion: when wp = 1, w; = 0 for i # 0, the CRIMNO
cost function reduces to the Godard cost function. Therefore, the CRIMNO criterion may

be seen as a generalization of the Godard criterion.
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3. Constant Modulus Property: the CRIMNOG criterion preserves the constant modulus prop-

erty inherer” in Godard.

4.3.2 CRIMNO Blind Equalization Algorithm

Define the equalizer coefficient vector u(z) & [u1(3), - -+, un(3)]T, and the received signal vector
y(2) 2 [y(3),---,y(i = N+1)]T, where N is the length of the equalizer. Then the equalizer outputs
are

Fi-=yTG~1)-u@),1=0,1,---, M, (4.64)

where superscript T denotes transposition of a vector.

Differentiating the cost function M(?) with respect to the equalizer coefficient vector u(s), we

obtain [12]

aM®
du(i)

+2wi[E(y" (i - 1)2(i)) E(Z°(1)2(i — 1)) + E(y"())2(s - 1)) E(2()2°(¢ - 1))]

= 4woEly"()3()(|E(i)|? — R2)]

+ -

+2wp(E(y" (i — M)E(3))E(27(4)2(i— M))+ E(y"(1)2(i— M)) E(Z(4)z°(i — M))]. (4.65)

By using the steepest descent method to search for the minimum point, we obtain

u(i+ 1) = u(i) — o - {4woE[y"(1)2(i){|2(i)[* - Ro)




+2wi[E(y"(i - DI E(2°()2(i - 1)) + E(y™(1)2(i - 1)) E(£(:)2"(i - 1))]
+ e

+2wym[E(y" (i — M)E()E(E"())2(i — M) + E(y"(i)8(i — M))E(2(i)3"(i — M)))(4.66)

where

u(?) = [u1(2), ..., uN(i)]T

In (4.6), the expectation are the ensemble averages taken with respect to transmitted data z(z)
while the channel impulse response f(i) and the equalizer coefficients u(i) are treated as fixed.
If we use single point estimates for the ensemble averages, we obtain the stochastic gradient

CRIMNO algorithm:

w(i+1) = u(i)— altwoy ()EG)E0) - By) + 2wn(y"(i — DEDIEG — DI + v — 1)56 — DEE)P)

+ -4 20p(g*()ED)IE(E — M) + 3 (i — M)E(i — M)|3(5)]%)]
= u(i) — afy"(1)Z(i) * (4wo|2(1)|2 + 2w |3(i — 1)|2 + - - - + 2wpr|2(i — M)|? — 4woR,)

+2wyy*(i — D)E(i — DIZE)P + - - - + 2wmy™ (i = M)3(E — M)|2(3)%).

Note that at each iteration, ali equalizer outputs (i —1),I = 0,1,---, M are recalculated using
current (most recent) equalizer coefficient vector u(i) via (i —1) = y_T(i — Du(?). This requires a
lot of computations. If, instead of using the current equalizer coefficient vector u(i), we use the
delayed equalizer coefficient vector u(i — I) to calculate Z(i — !). Note that (for small step-size,
which is required for the stability of stochastic gradient-type algorithm, the difference between

u(i) and u(i —l) is negligible. Then at each iteration we will need to calculate only one equalizer
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output F(¢) using the current equalizer coefficient vector u(:).

4.3.3 Adaptive Weight CRIMNO Algorithm

The shape of the cost function depends on the choice of weight w;. So does the performance of
the CRIMNO algorithm. Here, we describe an ad hoc way of adjusting the weights on-line in the
blind equalization process.

The basic idea is to estimate the values of all terms in the CRIMNO cost function over a
block of data and then set the weights used in the next block proportional to the deviations of
the corresponding terms from their ideal values at perfect equalization. The rationale behind
this scheme is that if one term in the criterion has a large deviation from its ideal value, then in
the next block the weight associated with it will be set equal to a large value, and consequently,
the gradient-descent method will bring it down quickly.

To elaborate on this idea, we rewrite the CRIMNQO cost function as

MP) = wodo + wiJy + -+ + warJp, (4.68)

where

Jo E(|z(3)IP - R,)?

Ji |E(EH)E (i~ DP1 <1< M. (4.69)
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Detine the deviation of the [th term D(Jp) by

A 0
D) = | - J,( ), (4.70)

where J,(") is the value of J; at perfect equalization (J,(o) =0,!l=1,---,M). Then the weights

are adjusted using the following formulae:

Y0D(Jo) 76D(Jo) < A
we =
x A YoD(Jo) > A
4
YD(J)) yD(J)) < A
w; = < (4.71)
\ A YD(J}) 2 A

where Ag > 0 is the scaling constant for the first term, ¥ > 0 is the scaling constant for the other
terms in the CRIMNO cost function, and A is a constraint on the maximum value of the weights
to guarantee the stability of the algorithm.

The CRIMNO algorithm with weights adjusted in this way is called adaptive weight CRIMNO

algorithm. Some in-depth comments are provided below:

1. When the deviations of all terms vary proportionally, the adaptive weight scheme be-
comes an adaptive step-size algorithm. Moreover, the adaptation is done automatically.
So when the algorithm converges, then weights decrease to zero. Hence, the adaptive
weight CRIMNO algorithm acquires as a byproduct the decreasing step-size, which has

been proven to be an optimal strategy for equalization [51].

2. For the adaptive weight CRIMNO algorithm, the shape of the cost function is changing.




The local minima of the cost function are also changing. Thus, what is local minimum of
the cost function at one iteration may not be at the next iteration. However, whatever
the change of the weights, the global minimum does not change, and it always

corresponds to perfect equalization.

. The adaptive weight CRIMNO algorithm tends to move out of a local minimum of the cost

function quickly, if the cost function has local minima and the algorithm gets trapped in
one of them. This is based on the following arguments. In the adaptive weight CRIMNO
algorithm, the equalizer coefficient increment, Au(i+1) = u(i+1)—u(7) is a random vector,
the variance of which determines how fast the algorithm will move out of a local minimum.
The variance of the equalizer coefficient increment depends on the step-size «, gradient
b%%%} and the weights w; (proportional to D(J;)). The step-size and gradient are the same
with the fixed weight CRIMNO algorithm; we thus concentrate on the third one: wj, or
equivalently D(J;). At a global minimum of the cost function, D(J;) are all small, thus,
the variance of the equalizer coefficient increment is small. Therefore, the algorithm will
remain near the global minimum. However, that is not the case with a local minimum. In
that case, D(J;) will be large, therefore, the variance of the equalizer coefficient increment
will be large (relative ot the case at the global minimum), and the algorithm will move out

of that minimum quickly. Moreover, the larger the deviation D(J;), the more quickly the

algorithm will move out of the local minimum.

. Blocks of data are used to estimate {J;}. The block length should be sufficiently long to

make the variances of the estimates small, but not long enough to make the weight update

fall behind.
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4.3.4 CRIMNO Extensions

In this section, the CRIMNO ideas, i.e., memory nonlinearity, are extended to the following cases:

(1) the case of correlated inputs; (2) the case when higher-order correlation terms [38] are utilized.

Colored CRIMNO

One of the key assumptions in the CRIMNO criterion is that the transmitted data are independent
and identically distributed (i.i.d). However, in practice, this may not be true for QAM signals.
Usually, in order to overcome the phase ambiguity caused by the squaring loop for carrier recovery,
differential encoding techniques are used, which correlate the input data when the source symbols
are not equiprobable. Since the operations of differential encoding are known, the autocorrelations
of the input data can be derived. In the case where the autocorrelations of the input data are

known a priori, the CRIMNO criterion can be modified as foliows:
MP) = woE(|2(3)|P - Rp)? + wi | E(E()E* (i - 1) = B2+ - -+ wny | E(F()E* (i — M) — Bm|® (4.72)

where [ = E(z(i)z*(i — 1)) are the known autocorrelations of the transmitted data.
Higher-Order Correlation CRIMNO
Here, a criterion which exploits the higher-order correlations, such as the fourth-order statistics

of the equalizer output, is given below:

M = woB(|2(i)IP - Rp)* + 3 wil E(2(i)3"(i — )[*
l

+ > vl E(2(9)E°(i — )3(i — B)&"(i = D|? (4.73)
skt all different
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The performance of both (4.73) and (4.74) criteria needs to be investigated.

4.3.5 Computer Simulation

Computer simulations have been conducted to compare the performance of the adaptive weight
CRIMNO algorithm with that of the Godard (or CMA) algorithm. Fig. 4.6 shows the perfor-
mance of the adaptive weight CRIMNO algorithm, compared with that of the Godard algorithm
under the different step-sizes, including the optimum one: We see that the performance of the
adaptive weight CRIMNO algorithm is better than or approaches that of the Godard algorithm
with optimum step-size. Fig. 4.7 shows the performance of the adaptive weight CRIMNO algo-
rithm for different memory sizes (M = 2.4.6). Fig. 4.8 shows that the corresponding eye-patterns
at iteration 20000. We see that the larger the memory size M, the better the performance of
the adaptive weight CRIMNO algorithm. Table 4.2 lists the computational complexity of the
CRIMNO algorithm, the adaptive weight CRIMNO algorithm, and the Godard algorithm. We
see that there is only a little increase in computational complexity. Therefore, the performance

improvement is achieved at the expense of little increase in computational complexity.

5 ALGORITHMS WITH NONLINEARITY IN THE INPUT

OF THE EQUALIZATION FILTER

The Polyspectra Based Techniques

Another class of blind equalization algorithms are those algorithms which are based on higher-
order cumulants or polyspectra [36], such as the tricepstrum equalization algorithm (TEA)
(24], the power cepstrum and tricoherence equalization algorithm (POTEA) [7], and the cross-

tricepstrum equalization algorithm (CTEA) [8]. All these algorithms perform nonlinear transfor-
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mation on the input of the equalization filter. This nonlinear transformation, e.g. the generation
of the higher-order cumulants or polyspectra of the received data, is a memory nonlinear trans-
formation, because it employs both the present and the past values of the received data. The
use of the higher-order statistics of the received data is necessary for blind equalization, since
the correct phase information about the channel can not be extracted from only the second-order

statistics of the received data [14], [29], [34], [35], [37], [42].

5.1 Definitions and Properties: Cumulants and Higher Order Spectra

The readers are assumed to be somewhat familiar with the basic material of higher-order spectra.

However, some important properties which will be used in the subsequent sections are given.

5.1.1 Definitions

1. Definition of Cumulants:
Given a set of n real random variables {z1,z2,---,Z,}, their nth joint cumulants of order

is defined as

a _,na"lnfb(vl,vg,---,vn) e
L(zlpz% )In)_( J) av‘avz..'av" Ivl —02 - —vn-'o (5'1)
where
®(v1,v2,- -, vn) = E{exp j(v121 + -+ -+ vaZa)}. (5.2)

Given a real stationary random sequence {z()} with zero mean, E{z(i)} = 0, then the

nth-order cumulant of the random sequence depends only on the time difference and is
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defined as

A, . LOMnd(v1,vg,--,v,)
L.Z‘ y sy 3 Tn— - n - ) ) = = s s e — = .
(Tl T2 T, 1) ( J) avlav2 .. avn | n V2 Un 0 (5 3)
where 71,72, -, Th~1 are integers and
O(v1,v2,7 -, vn) = E{exp j(viz(}) + voz(i + 1) + - - - + vo2( + Tho1))} (5.4)

Given a set of real jointly stationary random sequences {zx(i)}, ¥ = 1,2,---,n with zero
mean, E{z,(i)} = 0, then the nth-order cross-cumulant of the sequences depends only on

the time difference and is defined as

anln¢z‘],2'...'n(vly v2, MY vn)
8v,0vy -+ -8y,

A .
L.‘L‘.l,?.v--,ﬂ.(rla T2y Tn-—l) = (_])ﬂ

where 71,77, -+, Th—1 are integers and

Qz.l,2,~-,n(vlv U2, vn) =FE {exp J (vlzl(i) + 0232(3. + Tl) +---+ 'Unzn(i + Tn-l))} .

(5.6)

. Definitions of Higher-Order Spectra.

Higher-order spectra are defined to be the Z-transforms of the corresponding cumulants
[34], [38]. Specifically, a nth-order spectrum of a real stationary zero mean random se-
quence {z(1)} is just the (n — 1)-dimensional Fourier transform of the nth-order cumulant

Ly(m,72,+,Tn-1) of the random sequence. That is
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n-1
A -7
Se(zivz2y2r) = E L(m,72,,Tnm1) H zZ; . (5.7)
=1

T2 TR
When n = 2,3,4 the corresponding spectrum is called power spectrum, bispectrum, and

trispectrum, respectively.

A nth-order cross-spectrum of a set of real stationary zero mean random sequences {z,(1)},
k=1,2,---,n,is defined as the (n — 1) dimensional Z-transform of the nth-order cumulant

Liy2,..n(T1, 72, -Taoy) of the random sequence, that is

n-1
N -
Senzem(z, 220 20m1) =) Lzazem(m, 72, mnon) [T 277 (5.8)
=1

7172, Tn~1

. Definitions of coherence.

Coherence is defined as the higher-order spectrum normalized by the power spectrum.
Specifically, a nth-order coherence of a real stationary zero mean random sequence z(3) is

defined as

Sz(zls 224700y zn—l)
[Sz(21)8:z(22) - - Sz(zn—x)Sz(I'I?;l Zl—l )]%

[ay
R:(Z],ZQ,"',Zn—l) = (5'9)

An alternative definition for the nth-order coherence, which is equivalent to the above

definitions, is

i

Sx(zly 22,00y zn—l)

S«r(‘.'l_lvz;l" * ‘,2;11)

A
Ri(21,22, "y 2n-1) = (5.10)

. Definitions of Cepstrum of Higher-Order Spectrum

The cepstrum is defined as the inverse Z-transform of the log function of the spectrum.

Specifically, a cepstrum for the nth-order spectrum of a real stationary zero mean random
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sequence {r(:)} is defined as

A
C.I.‘(ler'lv' * 'an—l) = A l[ln 31(211227' ° ‘1z'n-1)] (5‘11)

A cepstrum for the nth-order cross spectrum of a set of real stationary zero mean random

sequence {z(¢)},7=1,2,---,n, is defined as

A -
cx.l,2,---,n(7'ly T2y ‘Tn—l) =7 1 [[Tl 51'1'2'...’,,,(21, 22,700, Zn—l)] (512)

When n = 2,3,4, the corresponding cepstrum is called power cepstrum, bicepstrum and

tricepstrum, respectively.

5.1.2 Properties

Some important properties of cumulants are shown below.

1. If zy,23, - -,z can be divided into two or more groups which are statistically independent,

then the cumulant L(z,,z2,-:-,Z,) is zero.

Specifically, if {z(3)} are an independent, identically distributed random variables, the nth-

order cumulant of the sequence {z(i)} is

Lo(r,7m2y -y Taa1) = v8(11)6(72) - - 8(Tn=1) (5.13)

2. Cumulants of higher order (n > 3) are zero for Gaussian processes.
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3. If {z(#)} and {y(i)} are statistically independent random sequences and, z(i) = z(3) + y(i),

then

Lz(Tla T2, Tn-l) = LI(TI’T2’ o ',Tﬂ—l) + Ly(rly T2, '1Tn-l)- (5'14)

5.2 Tricepstrum Equalization Algorithm (TEA)
5.2.1 Problem Formulations

We assume that the received sequence after being demodulated, low-pass filtered and syn-

chronously sampled (at rate }) can be written as:

Lz
i) = 2@ +ul)= 3o f(K)ali - ) + wli) (5.15)

k=-L;

where the nonminimum phase equivalent channel impulse response { f(#)} accounts for the trans-
mitter filter, non-ideal channel (or multipath propagation), and receiver filter impulse response;
the input data sequence {z(i)} is generally complex, non-Gaussian, white, i.i.d., with E{z(¢)} =
0, E{z(i)®} = 0 and E{z(i)*} - 3[E{z(3)?})? = 7; # O; for example {z(i)} could be a multi-level
symmetric PAM sequence or the complex baseband equivalent sequence of a symmetric QAM
signal; the additive noise {w(i)} is zero-mean, Gaussian, generally complex and statistically in-
dependent from {z(i)}; we also assume that the channel transfer function F(z) (Z-transform of

{f(¢)}) admits the factorization [24]

F(z2)= A-I{z7')-O(2) (5.16)

the factor I(z~1) = Uiﬂ-(iiz_l—) lax] < 1,]ex) < 1, is a minimum phase polynomial, i.e., with

k-l

zeros and poles inside the unit circle. The factor O(2) = ,[;;1(1 — biz),|bx} < 1is a maximum
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phase polynomial, t.e., with zeros outside the unit circle. The parameter A is a constant gain

factor. Finally, the sequence {y(¢)} is the input to the blind equalizer.

5.2.2 Relations of Tricepstrum of the Linear Filter Output

The input to the channel, (i), is a non-Gaussian i.i.d. random sequence, thus

Sz(z1,22,23) = ¥z- (5.17)

The trispectrum of the output, y(t), of the channel (linear filter) is

Sy(21, 22, 23) = 12 F(21)F(22) F(23) F (27 271 231)

=9z AT I(zT)(25Y) - 1(231) - I(21, 22, 23) O(21) - O(22) - O(23) - O(27 1251 25115.18)

Taking the logarithm of Sy(z1, 22, 23) and then the inverse Z-transform, after some manipulation,

we obtain [24]
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log(y:4) m=n=1=0

-14™ m>on=1=0
-4 n>o0m=I1=0
140 I>00m=n=0
1B-m  m<on=1=0

< (5.19)
%B(‘“) n<0m=[=0

cy(m,n,l) =

N |

-}-B("') l<0m=n=0
—%B(") m=n=1[>0
%A(") m=n=1[<0

0 otherwise

.

where, A(D BUY) are the minimum and maximum phase differential cepstrum parameters of the

system, corresponding to I(z7!) and O(z), respectively. They are defined as follows:

d Lj Ly d L,
AD %S Sal-3c B ief A (5.20)
k=1 k=1 k=1

In addition, the following identity holds between the fourth-order cumulants L,(m,n,l) and iae

tricepstrum ¢y(m,n,!):

S {AD(Ly(m = gm0~ Ly(m + Jyn+ 1+ D)} +
J=1

i {B(")[Ly(m ~JIn-J1-J)-L,(m+ J,n,l)]} =-m-Ly(m,nl) (5.21)
J=1
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where we define,

—A(J), J=1,...0
J-c.(J,0,0) =

B9, J=-1,...- 0.

AV BWU) J =1,2,... are the minimum and maximum phase cepstral coefficients respectively,
which are related to the zeros F(z). However, in practice, the summation terms in (5.21) can be
approximated by arbitrarily large but finite values because A(Y) and B(’) decay exponentially as
J increases.

In practice the fourth-o-*er cumulants Ly(:) in (5.21) need to be substituted by their estimates
L,(-) obtained from a finite length window of the received samples {y(¢)}.

The TEA algorithm, uses (5.21) in order to form an overdetermined system of equations,
i.e., we have more equations han unknowns. Then, TEA solves this ovcrdetermined system
of equations, adaptively, using an LMS adaptation algorithm. At each iteratior an estimate of
the cepstral parameters {A(D} and {B{)} is computed. The coefficients of the equalizer are

calculated for {A)} and {B()} by means of the iterative formulas.

5.2.3 TEA Algorithm

Let:
{y()}: The received zero-mean synchronously sampled communication signal.
Ny, Ng: Lengths of minimum and maximum phase components of the equalizer.
P, q: Lengths of minimum «nd maximum phase cepstral parameters.

Méi)(m. n,{): Estimated fourth-order moments of {y(z)} at iteration ().
Rg,')(j): Estimated second-order moments of {y(¢)} at iteration (2).

i,g,i)(m. n,1):  Estimated fourth-order cumulants of {y(¢)} at iteration (7).

Symmetric PAM or QAM s3ignaling:
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In general, for 1-D (e.g. PAM) or 2-D (e.g. QAM) signaling with symmetric constellations:
LP(m,n 1) = MP(m, n,0) = RP(m) - RD(n = D-RP(nYRO ~ m)y-RO RO (n - m) (5.22)
For symmetric square (L X L) QAM constellations:
L(m,n, 1) = M (m,n,1) (5.23)

and Ag)),B((‘.J)) are the minimum and maximum phase differential cepstrum parameters at iter-
ation (i) respectively. L, and L; are the orders of the minimum phase and maximum phase
components of the FIR channel, respectively. Note that, {a;}, |a;] < 1 and {31_—}, |bi] < 1 are

the zeros of the minimum and maximum phase components of the FIR channel, respectively.

{u(?)}:  The coefficients of the equalizer at iteration ().

{#(d)}:  The coefficients of the equalizer at iteration (i).
At iteration (z): i=1,2,...

Step 1 Estimate adaptively the Lg,")(m,n,l), -M < m,n,l < M, from finite length win-
dow of {y(k)} as described below. M should be sufficiently large so that L,(m,n,l) ~ 0
for |m|, |n|, {} > M. Assuming that at iteration (0) we have received the time samples
{y(1),.. 'y(Ilag)} we proceed as follows:

Stationary Case with Growing Rectangular Window

MM (m,n, 1) = (1= n(i)) - METD(m, n, 1)+ n(i) - y(SY(Si + m)y(S§+ n)y(Si+1)  (5.24)

RO(5) = (1= n(i))- RY™V(5) + n(3) - y(S)u(S + 5) (5.25)

where, n(i) = '—}—, S.}. = min(i + I]ag’i + Ilag -m,t+ Ila.g -n,t+ Ilag - 1), S{; = min(i +

*lag
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lag- 1+ Iiag = J)- Finally substitute (5.2:4) and (5.25) into (5.22) or (5.23).
Nonstationary Case
First Way:

for (<A use (5.24),(5.25) with »(d) = ———
Lt ll.‘\g

for > A wse (5.24),(5.25) with y(:) = 1y = lixed (5.26)

1 should have a small value (0 < 5 < 1), for example = 0.01.
Second Way: (for symmetric L°- QAM signaling)
Since in this case the second-order moment R (j) = 0, we can use M (m,n,l) with a forgetting

factor w.0 < w < 1 as follows. (8% is as before):

(i+llag)-.\)§‘)(711.n,l) = w-(i—1+I|ag)-;\Y!§‘"l)(ln.n,l)+y(5,§)y(5§+m)y(5§-{-n)y(5‘;+l) (5.27)

and substitute (1 + [15,) - 1\}$i)(171. n.l) for [19’(771‘ n,l) everywhere.

Third Way:

Formulas (5.24) and (5.25) could be used in nonstationary environments by reinitializing the
algorithm after certain number of iteration or when a channel change is detected,

Remarks:

. . J
e By using the svmmetry properties of fourth-order cumulants only iﬂzji cumulants need

to be calculated.

o The assumption that [j,, data have been received at iteration (0) avoids ill conditioning

of the matrices of the system given in Step 3. It causes a delay to J),, at the input of the
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equalizer.

Step 2
Select p, q arbitrarily large so that AD ~ 0 and BY) ~ 0 for I > pand J > ¢. For example,

C = 10~* ( very small constant)

AD ~0 for I>p=int [log -g—]

BYU) ~ 0 for J>p=int [log %] (5.28)

where, int[-] denotes integer part and mazl|a;| < a < 1, maz|b| < 8 < 1.
Define: w = maz(p,q),z2< %,8< 2.
Step 3

Using the relation:

P
Z{A{{)) [i’gj)(m_I,nJ)—i'gi)(m'i‘-[,n'*'l,l‘*'f)]} +
I=1

q .
JZ {BY) [L9(m = Jyn = 1= 1) = LP(m + I, 0]} = —m- E(m,n, 1) (5.29)
=1

withm = -w,...,-1,1,...,w,n = —2,...,0,...,zand [ = —s,...,0,...,s to form the overde-

termined system of equations:
P(i)-a(i)=p(1) i=0,1,2,... (5.30)

where P(i) is [N, X (p + ¢)] (where N, = 2w x (2z + 1) x (25 + 1)) matrix with entries of the

form {L{)(m,n, 1) = L(e, 7, N)}; a(i) = [/ig)), cee Ag’)), f?g)), " .,B((:.’))]T (T denotes transpose)
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is the (p + q) x 1 vector of unknown cepstral parameters; (i) is the N, X 1 vector with entries
of the form {—m - L,(m,n,1)}.
Step 4

Assume that initially &(0) = [0, ...,0]T. Update a(i) = [A(1),..., fig.’)), B(),..., B((?))]T as follows

a(i+1) = a@)+pQ)-PH3G)-e), (5.31)

éi+1) = p(i)— PG)-a(), 0< u(i)<2/tr{PH(i)- P(3)} (5.32)

Step 5
Calculate the equalizer normalized coefficients. Initialize %ny(i,0) = iny(i,0) = 1 and the

estimate:

) PR
iinv(iy k) = 79- Z[A(‘) ] . i{nu(i, k—n + 1)
n=2
k=1,...,N (5.33)

- . 1 d - ~ .
Oiﬂv(z’k) = E Z ["'B((,l) )] . oinu(z’k -n+ 1)
n=k+1

k=-1,...,—N; (5.34)
where (i) is the iteration index taking values i = 1,2,3... Then,
Ginorm (i, k) = tiny(3, k) * 6iny(i, k), k = =N2,...,0,..., Ny (5.35)

where {*} denotes linear convolution.

Step 6
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Estimate the gain factor A(i) as follows: In step (1) we have already calculated:

£$1(0,0,0) = v, - Y (f(k))*
k
MP(0) = Qe - Y (f(K))? (5.36)
k

where Q; = E{(z(k))?}. 7: = E{{x(k))*} - 3- Q2 are known. Also:

Wi k) = ZZA{") D.k—n+1), k=1,...,p
1 o .

6ik) = T 3 By aik-n+1), k=-1,....q (5.37)
n=k+1

and f(i, k) = i(¢, k)*&(i, k), {+} denotes convolution, Qi) = C(F(, k)2, 74(2) = e (FGL DA

Then (the sign of m cannot be identified):

For L-PAM Signaling:

1 Q: Qf( ))
Rl AN 5.38
A(i) (M?()(O) (5.38)
For L?-QAM Signaling:
1 727(0) )%_ bt ( 74(3) ) (5.39)
ri(i)—<ll§,"(0,0,0) = hel* e 1%0,0,0) '

since v, < 0 for equi-probable L2-QAM signaling.
Step 7

Let, y(i) = [y(i + N2),-+ -, y(i = NIT 20d [fngrm ()] = [dnorm(is =N2), - - -, Gnorm (i, N1)]T. Fi-

54




nally, the output of the TEA equalizer is:

~ [@norm(i)]T ' 3_/.(2) (5'40)

While most of the Bussgang blind equalization algorithms, which are based on non-MSE cost
function minimization, have not been shown to be globally convergent and cases of their mis-
convergence have been encountered, the TEA algorithm, designed as described above, is a more
reliable alternative, as it guarantees convergence.

Remarks:

1. Since Gaussian noise is suppressed in the fourth-order cumulant domain, the identification
of the channel response does not take into account the observation noise. Consequently,
the proposed equalizers work under the zero-forcing (ZF) constraint. For the same reason,
we expect that the identification of the channel will be satisfactory even in low signal to

noise (SNR) conditions.

2. The ability of the tricepstrum method to identify separately the maximum and minimum
phase components of the channel makes possible the design and implementation of different

equalization structures.

3. In the recursive formulas (5.37) we used the following properties that relate time impulse
responses with cepstrum coefficients: (i) a channel and its inverse have opposite in sign cep-
strum coefficients, (ii) the cepstrum coefficients of the convolution of two minimum phase or
two maximum phase sequences, are equal to the sum of the corresponding cepstrum coeffi-

cients of the individual sequences and (iii) two finite impulse response (FIR) sequences with
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conjugate roots have also conjugate cepstrum coefficients. These become unique features

of the TEA equalizer when is compared with other equalization schemes.

4. The described algorithm is based only on the statistics of the received sequence {y(i)} and
does not take into account the decisions {#(¢)} at the output of the equalizer. Consequently
wrong decisions (and thus error propagation effects) do not affect the convergence of the

proposed equalization schemes.

5. Instead of using the LMS algorithm to solve adaptively the system of equations (5.30),
one may employ a Recursive Least-Squares (RLS) algorithm [25] which will have a faster

convergence at the expense of even more computations.

5.2.4 Power Cepstrum and Tricoherence Equalization Algorithm (POTEA) [7]
5.2.5 Relations of Power Cepstrum and Tricoherence of the Linear Filter Output

The problem is as formulated in Section 5.2.1, the channel output y(i) is the convolution of the
non-Gaussian i.i.d. random sequence z(i) with the channel impulse response f(i) plus some
noise. The cepstrum of the power spectrum of the channel output y(¢), can be shown after some

algebra to be equal to [T7].

In|A,| m=0
—,—:;[A‘("‘) +BM™] m>o0 )
cp,(m) = \ (5.41
1407 4 B m <0

otherwise

(=]
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where 4% B(*) are the minimum and maximum phase cepstral coefficients of F(z). These are :

Lj Ly
S
1=1 i=1

L
BX = ST, (5.42)
1=1

where {a;} and {b;} are the zeros of F(z) inside and outside of the umt circle respectively.

Remarks:

1. A®) Btk decay exponentially and thus their length can be truncated in practice at k = p,

so that A(®) B(P) are arbitrarily small.

2. If the channel F(z) has cepstral coefficients A%), B(¥)  its inverse filter, U(z),
has cepstral coefficients —A(¥), —B(*), It is also shown in [7] that if we define S(¥) S

AR 4 B=(%} and r (k) = E{y(i+ k)y*(i)} , then the following relations holds:

14 14
S5 B —ry(m - k)] + Y SE[ry(m + k)] = mry(m), m=1,---2p (5.43)
k=1 =1

where p is some integer, the choice of which is discussed in [24]. Now let us counsider the

cepstrum of the tricoherence.

!
S (31.2’2,23) B
Ry(z1,22.23) = [ — (5.44)
Sglz1 725,23 )
It has been shown that the trispectrum of the received data satisfies:
Sy(21.22.23) = 1 F (a7 () Fo (25 D) (27 27 25! (5.45)

57




Therefore,

After some algebra, we obtain

In] Ay}

_#[A-(m) - B(m)]
—1[A=(=m) _ pgr(=m)]
_%[A-(n) - B=™)]

Ll =it - prem)
i [A=(m) _ pim)]

1
—rlr_z[A(—m) — B(=m)]
_%[‘441) - B

_HA(—I) - B*(-1]

0

\

Taking the logarithm of both sides of (5.44), we obtain,

m>0,n=0,1=0
m<0,n=0,l=0
m=0,n>0,0{=0
m=0n>0,0=0
m=n=1>0

m=n=1[0<0

m=0,n=0,1>0
m=0,n=0,1<90

otherwise

1 - - - -
Ry(21,22,23) = 7 [InSy(z1, 22, 23) — InS; (7 1,22 l,z3 h
2

Differentiating with respect to Z; and performing inverse Z-transform, we obtain

2Ly (m.n,l)x Ly(-m, —n, =)+ [-mR,(m,n,l)]

= Ly(-m,—n,~1)*[-mL,(m, n, D+ Ly(m,n, 1)« [mL;(m,n,l)]
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By defining the following functions:

6u(m,n,) & Li(-m,—n,—1)* L,(m,n,1)

8y(m.n,l) 2 Li(-m,—n,~l)«mLy(m,n,1l)
are combining (5.49) and (5.50), we obtain:
201 (m,n, 1) *x [mRy(m,n,1)] = 82(m,n, 1)+ 05(—m, —n, -1)
Defining D®) = A%) _ B*(%) and combining (5.47), we obtain:

p
3" D*Bgy(m — kyn— kL - k) — 8;(m — k,n,1)]
k—=

14
+ 3 DB (m+k,n+k [+ k)= 0(m + k,n,1)]
k—=1

= 0(m,n, 1)+ 03(-m,—n,-1)

A rule of thumb is to define w = p, z < w/2, h < 2z and then takem = —w,...,-1,1,..

—2,...2, I = ~h,...,h to form a linear overdetermined system to equations.

5.3 The POTEA Algorithm

In this section the POTEA algorithm is given in detail.

Let

Ny, .No: Lengths of minimum and maximum phase components of the equalizer.
p: Length minimum and maximum phase cepstral parameters,

At iteration 1t = 1,2,....
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Step 1 Estimate adaptively the Lg,l)(m, n, ) for —M; < m,n, [ < M, and ry)(m) for — M, <

m < M, from a finite length window of {y(n)}, and then generate the following functions:

alli)(m’nsl) = L;(‘-)(-—Tn,—",—l)* Lg,i)(7nanal)

63 (m,n, 1) = L:O(=m,—n, =)+ mLP(m,n,1)

Step 2 Choose p arbitrarily such that A(P+) ~ 0, B?*+Y = 0 and define w = p, 2 < ¥, h

Step 3 Form the equations

Z §*F=ry(m - k)] + ZS(L)[Ty m+ k)] = mry(m), m=1,---.2p
k=1

where S = AK) 4 B=®) k=1, p.

P

Z B gy (m — k,n— k1~ k) — 61 (m — k,n,1)]

P

Z DX®G (m + k,n+ kL4 k) - 0,(m + k,n, )]

= G(m,n, 1)+ 63(-m, —n, 1)

and the following system of equations

o

o

It
3

O
o
I

=L

where the matrices P, a, p, Q,b and § are defined above.
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Step 4 Solve adaptively the above systems employing LMS-type adaptation as follows:

a(i+1)

I

a(i) + p(i)PH(i)é()

b(i + 1) b(7) + p' (1)@ (3)€'(4)

where

éi) = p(i) - P(i)a(i)
EG) = 4(i) - Q)b(3)

. 2
0 < }t(l)<rpH.P—)'
0 < p'i)< 2
tr(Q7Q)

The algorithm at instant ¢ minimizes the mean square error:

:)
It

E{ef(i)e(4)}

~
~
—
.
N’
i

E{eH(i)e'(i)}

Step 6 Calculate

;eq(ivk) = Z 1(n ”L«qlk—n-}-l)k—l
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. 12 —a)is s
bualik) = T D0 (B loe(ik—n 4 1),k = -1, =N, (5.61)

n=k+1

with initialization : 1.4(4,0) = 6¢,(i,0) = 1. The normalized (A = 1) estimate finorm(i, k)

at iteration (i) is given by:
Binorm(is k) = 1eg(3, k) % 6eq(3, k) (5.62)

Step 7 Estimate gain factor A(i)

Step 8 The reconstructed transmitted sequence at iteration(i) is:

(i) A(z)kz Tnorm (1, K)y(i — k) (5.63)

Computational Complexity
In this section the computational complexity of POTEA is presented and compared with the

computational complexity of TEA.
PAM

POTEA: 32MY12 4 30901 4+ 1)+ 2p(Np + p + 1) + M248N43 4 (401)3]0g, 4M

TEA: 22MHE 4 320 4 1) + (p+ q)(2N, + 1) + N2t8N22
QAM

POTEA: 4[22M21 4 9201 4 1) 4 2p(2N, + 4p + 2) + D248N3 4 (4M)3 log, 4 M]

TEA: 4[BHE 4 (p 4 g)(2N, 4+ 1) + DE48N43
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5.4 Cross-Tricepstrum Equalization Algorithm (CTEA) (8]
5.4.1 Problem Formulaticns

Assume we have n measurements at each time index k, y(k),7 = 1,2,...n, where

wi(k) = fi(k) » 2(k) + ni(k) (5.64)

(shown in Figure 5.1 for n = 4) and
1. fi(k) is the impulse response of a discrete time linear time invariant system,
2. z(k) is a non-Gaussian, nth order white process with cumulant v; # 0,

3. ni(k) is zero-mean additive noise, with n;(k) independent of n;(k) for i # j and independent

of z(k). No assumptions are made about pdf for whiteness (in time) cf n;{k).

We also assume that each impulse response h;(k) is stable with no zeros on the unit circle and

that its Z transform F;(z) can be written as [8]

Fi(2) = AiLi(271)04(2) (5.65)

where the A; are gain constants, the r; are integer linear phase factors,

L, -
I( -—1) _ '=31(1 - ;2 1)
iz T omliay _ . -1

Hj=1(1 cijz~t)

is the minimum phase component and

Li?

0i(2) = [ (1 - bi52)

i=1
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is the maximum phase component, with zeros a;; and poles c;; inside and zeros b;; outside the

unit circle (i.e. |aij| < 1,]0;5| < 1, and |¢;5] < 1).

5.4.2 Relation of Cross-Tricepstrum of the Linear Filter Output -

With the above assumptic -s, the nth-order cross-spectrum of the y;(k) can be written as

n-1
Sy1.2,..n(21, 22, s Zne1) = Y F1(21) Fa(22) - - ‘Fn—l(zn—l)Fn(H z71) (5.66)
=1

Taking the logarithm and performing inverse Z-transform on both sides, we obtain after some

algebra the following results:

Invy, m=my=...=My_1 =0,

—(1/m;)Ai(m;) m; >0,m;=0,j <1,

(l/m")Bi('-mi) m; < O,mj =0,7 # i,
nyl-z.-"»ﬂ(ml» M2, mn—l) = 4 (5.67)

—(1/my)An(-my) my=ma=...=m,1 <0,

—(1/mp)Ba(my,) my=ma=...=my_;>0,

0 otherwise
with
Lis Lis
Adk) £ Y (ai)* =Y (ei)
J=1 j=1
A Ll2 )
Bi(k) = Y (bij). (5.68)
=1
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This results means that the n-th order cross-cepstrum is non-zero on = lines only in its domain
and that on each of these lines we find the complex cepstrum of a zero-linear phase, scaled version
of one of the n impulse responses.

Now, to deveisp a least squares solution for the A; and B;, we take first partial derivatives of
the logarithm of (5.66), independently with respect to each of its variables, followed by inverse
Z transforms. Letting Sy 12, 2(m1,m2,...,m,_1) denote the n-th order cross cumulants of the

vi, we get the following n — 1 equations relating the cross cumulants to the cepstral coefficients:

Sy1.2,.n(m1,ma, ..., mp) * (M ¢y12,...n(M1,Mm2,...,mp_1))

= -my 5y,1.2,...n(m1 1 M2y a0y mn—l)

for ¢ = 1,2,...n — 1. Each equations involves an (n — 1) dimensional convolution. However,

plugging in (5.67) reduces each equation to a single finite summation:

0

Z Ai(k)Sy,1,2,...,n(tlst27 ey tn—l) - Bi(k)sy,l,2,...,n(ul, Uyo- ey un—l)
k=1

’An(k)sy.l.2....,n(mi + k, m; + k7 ceey My + k)

+Bn(k)sy,l,2,...,n(mi - k7 m; — k’ ceey My — k)

= —miSy,x,z,...,n(ml, M2y.0ey mn—l) (5-69)
where
t;, = m;—k
u, = mi+k
t; = u;= m; 7 # 1.
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From equation (5.68) the sums in (5.69) decay, so we can truncate them to p; and ¢; for
the terms involving A; and B; respectively (see [8]) and rewrite (5.69) as a finite dimensional
vector dot product equation. Writing M > p; + ¢; + pn + ¢» equations at M points in the n — 1

dimensional domain of Sy 2, ., we can form the overdetermined system

ﬁin '_C—'-in = lin (570)

5.4.3 Cross-TEA (CTEA) Algorithm

In this section we describe the CTEA algorithm for blind equalization of QAM signals with four

receivers. The algorithm has two stages at each iteration:

1. Channel identification and deconvolution

2. Combining by use of a decision rule

Channel Identification and Deconvolution

Step 1. Estimate the cross-cumulants and kurtoses of the received data recursively.

Step 2. Form the systems of equations (5.70) and solve each system in turn to get the cepstral

coefficients for each channell

Step 3. From the results of the previous step, estimate the forward and inverse channel impulse

responses up to a desired length.

Step 4. From the estimated forward impulse response and the kurtoses, estimate the gains Afj) for

each channel.

!The cepstral coefficients for channel four can be estimated from the solution of one of the three systems or an
average of all three.
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Step 5. With the estimated inverse response, f,'(ﬁw(k)’ and the estimated gain for each channdl,

deconvolve to estimate the input symbol as

NN Y ()
2:(j) = E!Ja(]) * fiine(®)

Combining Decision Rules

As illustrated in Figure 5.1, from the four estimates Z;(j) we need to form a single quantized
decisions Z(j). We describe here an optimal combining rule in the case of a perfect equalizer, as
well as three sub-optimal schemes, arithmetic mean, majority rule, and median (which for n = 4
channels is equivalent to a-trimmed mean with a = 1).

Optimal Decision for the Perfect Equalizer (8]

We consider the following assumptions:
1. z(k) is complex and uniformly distributed,
2. u;(k) is the perfect equalizer for fi(k), i.e. fi(k)* ui(k) = é(k), and

3. ni(k) are zero-mean, complex Gaussian variables with known variance o? and are indepen-

dent across channels.,

Since we will do symbol by symbol detection, we will drop the time index k for simplicity. With
these assumptions,

- A .
I; =+ n*xu; =T+ n;.

Therefore, the conditional probability density of  given X, p(Z|z), is complex Gaussian with

mean ¢ and variance

67 = o Y ui(k)P.
k
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Since the noise in each channel is independent, the maximum likelihood estimate Z of z given

the four observations r; (assuming z to be from a continuous distribution) is

1 22
- . ZZ:’ d, "TiR

Ip = —
20,
1 - -2
" 3 i Tl
Ty = 5
Ziot

where the subscript R and I denote real and imaginary parts respectively. Note that if the noise
has the same variance in all channels then this result reduces to the arithmetic man. If, on the
other hand, we assume that z belongs to a known discrete set D then we need to find £ € D
which satisfies
: =21~ _ 212
min ) & °|%; - &
Z€D - H | 3 l
or equivalently
min 357 (141 - 2(2REiR + £18i1)) -
€D .
Of course the assumptions of perfect equalization and known noise variance are not realistic in
practice so we describe below three sub-optimal combining rules which we tested in our simula-

tions.

Arithmetic Mean

Step 1. Form a soft decision statistic

1 4
2) = 3 Y #0)-

1=1
(If information is available about the relative quality of the channels then a weighted mean

could be used.)
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Step 2. Put £(j) through a decision device to get Z(j).
Majority Rule

Step 1. Put each estimate through a decision device to form four decision statistics Z;(7).

Step 2. If there is a plurality among the #;(j) in one region of the decision space then that is the
decision. If there is a tie ( all four different or two votes for each of two decisions) use
a tie-breaking procedure. One method would be to pick the decision region that has the

smallest average squared decision error. For example, if #;(j) = £2(5) # £3(J) = £4(J):

2
Y 1&i(5) ~ ()

Let dl =
=1
4

Let dy = Y |(4) - %)
=3

Then

Choose #;(j) dy <d;

5:2(]) dz > dl.

Median

Step 1. Order the real and imaginary parts of the &;(j) separately.
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Step 2. Set

REAL{z(j)}

]

median{REAL{%;(5)}}

IMAG{z(j)} median {IMAG{%;(7)}}

i

Step 3. Put Z(j) through the decision to get (7).

5.5 Computer Simulations

Computer simulations has been employed to compare the performance of the blind equalization
algorithms. The performance metric used are those in Sections 2. And the following issues are

addressed.

5.5.1 TEA vs. Bussgang-type Algorithms

Fig. 5.2-5.4 show the performance of the TEA algorithm, compared with that of Bussgang-
type algorithms, such as Godard, Benveniste-Goursat, Stop-and-Go algorithms. We see that the
TEA algorithm opens the eye much faster than the Bussgang-type algorithms. This performance

improvement is achieved at the expense of larger computational complexity.

5.5.2 POTEA vs. TEA

Fig. 5.5-5.6 show the performance of the POTEA algorithm, compared with that of TEA. We
see that the POTEA algorithm converges faster than the TEA algorithm. The performance

improvement is achieved at the expense of further increase in computational complexity.
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5.5.3 CTEA vs. TEA

Fig. 5.7-5.8 show the performance of the CTEA algorithm compared with that of TEA algorithm.
We see that the CTEA algorithm converges faster than the TEA algorithm for some channels.
The performance improvement is achieved at the expense of further increase in computational

complexity.

6 ALGORITHM WITH NONLINEARITY INSIDE THE EQUAL-

IZATION FILTER

Still another class of bind equalization algorithms are those algorithms which use Volterra filters
[9], [10] or neural networks [20], [26], [27]. This class of algorithms perform nonlinear operations
inside the equalization filter. It is therefore also be able to correctly extract the phase information
of the unknown channel from its output only. In this section, we will concentrate on those

algorithms based on neural network.

6.1 Review of Equalization Techniques Based on Neural Networks

Equalization is a technique which is used to combat the intersymbol interference caused by non-
ideal channels. Usually, equalizers are implemented using linear transversal filters [17], [18], [30],
[31]. However, when the unknown channel has deep spectral nulls or some severe nonlinear
distortions, such as phase jitter and frequency offset, linear equalizers are not powerful enough
to compensate all of these. That is why nonlinear filters, such as those implemented by Volterra
filter or neural network, come in and play an important role.

Neural Networks (NNWs) are mathematical models of theorized mind and brain activities.

The fundamental idea of NNWs is to organize many simple identical processing elements into
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lavers to perform more sophisticated tasks. The properties of NNWs include: massive paral-
lelism; high computation rates; great capability for non-linear problems, continuous adaptation;
inherent fault tolerance and ease for VLSI implementation, etc. All these properties make NNWs
attractive to various applications. Several neural network based algorithms have been proposed

for equalization problems.

1 Multi-Layer Perceptron
The multi-layer Perceptron (MLP) [39], [40] is one of the most widely used implementations
of NNWs. It comprises a number of nodes which are arranged in layers, as shown in Figure
6.1. A node receives a number of inputs zy,z9,--+.2,, which are then multiplied by a set
of weights wy, w,,- -, w, and the resultant values are summed up. A constant v is added
to this weighted sum of inputs, known as the node threshold, and the output of the node
is obtained by evaluating a nonlinear (sigmoid) function, f(.), which is called activation

function.

The architecture of a perceptron can be described by a sequence of integers ng, na, - - -, ng.
where ng is the dimension of the input to the network, and the number of nodes in each
successive layer, ordered from input to output, is ny,n3,- -+, n%. In this notation, the MLP

produces a nonlinear mapping g = R" — R"™.

The updating of the connection coefficients of the MLP is done iteratively by using back-

propagation (BP) algorithm with the following formula:

(Wig1, Vig1) = (Wi, v;) + A (6.1)
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and
2

d(wll 'U,')

A= —(s,n)- +a-B_y. (6.2)

2 Self-Organizing Feature Maps
The topology by self-organizing feature map (SOM), which is introduced by Kohonen [26],
[27] consists of two layers of nodes, referred to as input layer and output layer, which are
fully connected with different connection weights. The inputs to the SOM can be any
continuous values, whereas each of the output-layer node represent a pattern class that the
input vector may belong to. That means the outputs of SOMs are discrete values, and

therefore, the SOM is sometimes also referred to as learning vector quantizer.

The SOM works iteratively as follows. First, find the set of connection coefficients W,

which is the closest to the input vector Ay,
P
Il Ax = W, li=min || A = W, || (6.3)

Second, perform the following quantization of the output-layer node:

1, if|| Ax = W, ||= min || Ax — W; ||
by = ! ’ (6.4)

0, otherwise.

and then move W, closer to Ay using the equation

[ a(k)-[at - W), 5=

AW =\ B(k)-[af - Wyl, j€Nni#g (6.5)

0, jg N,




where N, is the topological neighborhood of the winning node b, which consists b, itself
and its direct neighbors up to the depth 1,2,---, and a(k) and B(k) are the learning rate

at time k.

6.2 The MLPs Equalization Algorithm for PAM and QAM Signals

The applications of MLP in equalization problems so far, have been limited to binary {0,1} or
bipolar {-1,1} valued data and real valued channel models [11], [20], [49]. In this section, we
introduce for the first time a new implementation structure of MLP which works well with
L-PAM (L > 2) and N-QAM (N;4) signals.

Looking into a MLP structure, we find out that it is the sigmoid function of the output
laver nodes that confines the network outputs to the range [~1,1]. In our equalization problem,
the signals are equally spaced and symmetric with respect to either the original point of the
coordinate, or to the z and y axes. Thus we can just scale up the node function of the
output layer by a constant factor C which is large enough to cover our maximum
signal range, e.g., [-15,15] for 16-PAM or 256-QAM signals. So, for the output layer, we have
[30], [40]

fu(a)=C 1oen (2 (66)

as the activation function. For the hidden layers, we still use the sigmoid function

1___801'

T 14 e’

fi(z) (6.7)

The idea of adding another constant a comes form the thought that a smaller a, equivalently,

a lower slope in Figure 6.2, would avo'd high vibration, and in turn, decrease the chance of
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divergence in the course of weight adjustment.

For complex channel models and QAM signals, we use complex connection coefficients to
get the weighted sum to which a complex threshold is added. Then the sigmoid functions of
the real and the imaginary parts of the threshold added weighted sum are evaluated separately.
Again, for the output layer nodes. the outputs are multiplied by a constant C. Using the steepest
descent formula (Eq. 6.1, 6.2). we get the adaptation algorithm of our new MLP equalizer which
is described in Table 6.1 [30], [40].

Simulation are conducted to examine the performance of MLP equalizers. The equalizer is
implemented by the new MLP structure with only one output node. The input data to the
system z; are assurued to be independent of each other. The delayed input sequence z;_q4, where
d is channel dependent, is used as the training sequence. The performance of MLP equalizers is
evaluated by calculating the mean square error (MSE) E[(z — #)?] and the average symbol error
rate (SER) of the quantizer output. The eye pattern of equalizer outputs around certain number
of iterations is shown in Figure 6.3.

Figure 6.4 illustrates the performance comparison between MLP and LMS-based linear transver-
sal equalizer with the same number of inputs. The structure (the number of nodes in the hidden
layer) of the MLP has been fine-tuned through experiment. The step size p of the LMS-based
equalizer is also optimized (the biggest value without causing divergence). From Fig. 6, it ap-
pears that the new structure of MLP works no much better, as a channel equalizer, than the

situple linear adaptive equalizer. As a matter of fact, both methods end giving similar results.
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7 CONCLUSIONS

The purpose of this paper is to provide a tutorial review of existing blind equalization algorithms
for digital communications. Three families of techniques have been described, namely, the Buss-
gang techniques, the polyspectra-based tecliniques, and methods based on nonlinear equalization
filters or neural networks. The complexity of the Bussgang techniques is approximately 2N mul-
tiplications per iteration, where N is the order of the linear equalization filter. On the other
hand, the polyspectra-based techniques require approximately %N:‘ maultiplications per iteration.
However, as it has been demonstrated in the paper, the polyspectra-based techniques achieve
significantly faster convergence rate than the Bussgang techniques. Finally, it is pointed out in
the paper that blind equalizers based on nonlinear filters or neural networks are better suited for

equalization of channels with nonlinear distortions.
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Table 4.1 Nonlinear Functions of Bussgang Iterative Techniques.

Q(‘) = [ul ’ (2)v T, UN(I)]T

equalizer taps

y(§) = [y@), -, yi-N+ T input to the equalizer block of data

At iteration{:}, i = 1,2,---
z(i) = uf(?) y(3)

e(i) = g (&(1)] - £(3)

u(i+1) = u(z) + p y(z) e*(3)

Algorithm

LMS
training
mode

Decision
Directed
Mode
Sato

Benveniste-
Goursat

Godard
p.g=2

Stop-and-Go

Nonlinear function: g[Z#(:)] =

z(1) (linear)

£(#)

v csgn [£(4)] .

Z(1) + k1 (2(5) - 2(1)) + kal2(3) - 2(3)|-
(v csgnlZ(i)] - 2(4))

BOL - {12(0)] + Rpl2(i)lP~" — |2(3)?P~1}
i(i) + FA(3(i) - 2(3)) + LB (£(3) - £(3))"

(A.B) = (2,0), (1,1), (1,-1) or (0,0), depending
on the signs of DD and Sato errors
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Table4.2 Comparison of Computational Complexity
CRIMNO Adaptive Weight CRIMNO
Godard (memory size M) (memory size M)
Version | Version II Version 1
Real Multiplication | 4N+5 | 4N+8M+5 | MN4+8M+4N+5 4N+10M+5
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1).

2).

3).

4).

5).

6).

Table 6.1 Complex MLP adaptation algorithm.

Assign small random complex numbers to all the connections and
thresholds.

Forward propagate inputs through the network:

n,
- - - =zl . -Q
Git1,j = Z @iy Wi+ Vi =606,
=1

diprj = flalyy ) +3- F@3, ),

where i = 1,---M (M is the number of layers), f(-) is the sigmoid
function, and get the output,

z=C-am.
Present the training signal to find the output error,
em = ey [L= (#1/C)] /C + jeiy [1 - (3%/C)?) JC
where epy = ;.4 — 2.
Find the backpropagation error,
& =eli-[1- (@) +7-€d-[1- (ad)?,

where
Nepd
€= 2 Wil &gl
=1
Adjust connections and thresholds:
wijk(n+ 1) = wi;x(n) + 1 &4y ;(n) - aij(n),
vij(n + 1) = vij(n) + 0 - &;(n).

where “+” denotes conjugate operator. The momentum term can also
be added.

Back to Step 2.
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MOMENTS, CUMULANTS AND SOME APPLICATIONS TO
STATIONARY RANDOM PROCESSES

BY DAVID R. BRILLINGER*
University of California, Berkeley

The paper ranges over some basic ideas conceming moments and
cumulants, focusing on the case of random processes. Uses of moments
and cumulants in developing large sample approximate distributions, in
system identification and in inferring causal connections of a network of

point processes are presented.

1. Introduction. Moments and cumulants find many uses in main
stream statistics generally and with random processes particularly.
Moments reflect the parameters of distributions and hence, as via the
method of moments, may be used to estimate distributional parameters.
Moments may be employed to develop approximations to the statistical
distributions of quantities, such as sums in central limit theorems and asso-
ciated expansions. Moments may be used to study the independence of
variates. Moments unify diverse random processes, such as point
processes and random fields, and diverse domains, such as the line or

space-time.

2. Ordinary case. One can begin by asking: What is a moment? To

provide an answer to this question, consider the case of the 0~1 valued

*Research partially supported by NSF Grant DMS-8900613
AMS 1980 subiect classifications. Primary 62M10, 62M99.

Key words and phrases. Coherence, cumulant, moment, partial coherence, point pro-
cess, system identification, time series.

108




variates X, Y, Z. For these variates

E{XYZ} = Prob{X =1,Y =1,Z =1}
This provides an interpretation for a (third-order) moment in terms of a
quantity having a primitive existence, namely a probability. Higher-order
moments have a similar interpretation. One can proceed to general ran-
dom variables, by noting that these may be approximated by step (or sim-

ple) functions, see eg. Feller (1966), page 107.

Next one can ask: What is a cumulant? One answer is to say that it

is a combination of moments that vanishes when some subset of the vari-
ates is independent of the others. Suppose for erample that X is indepen-

dent of (Y, Z). The third order joint cumulant may be defined by

cum{X,Y,Z} = (1)

E{(XYZ}-E(X)E(YZ}-E(Y}E(XZ}-E{Z)E{XY) +2E(X)E{Y)E({Z)
By substitution one quickly sees that this last expression vanishes in the
case that X is independent of (Y, Z).

Expresion (1) gives one definition of a joint cumulant. An alternate
way to proceed is to state that that cumulant is given by the coefficient of

i30fy in the Taylor expansion of

lOg[E {ei(ax+ﬁy+72)]]
supposing one exists.

Taking the log here converts factorizations into additivities and one sees

immediately why the joint cumulants vanish in the case of independence.

Streitberg (1990) sets down a sequence of conditions that actually

characterize a cumulant. These are:

1. Symmetry




cum (X, X,, - -} =cum{X5 Xy, -}
2. Multilinearity

Cum{aXI,X2, "'}=acum{X1,X2’ ...}

cum (X +Y [, X9, - -} =cum{Xy, -} +cum{Yy, - -}
3. Moment property, if the moments of X and Y are identical up to order
k
cum {X} = cum (Y}
4. Normalization, in the expansion in terms of moments
Cum{X‘, vt ’Xk] =E[X1 et Xk] + -
5. Interaction, if a subset is independent of the remainder
cum{X,, -+ X} =0
Cumulants provide a measure of Gaussianity. If the variate X is nor-
mal, then
cum, {X} =0 )
for k >2. (Here cum, denotes the joint cumulant of X with itself k
times.) Putting (2) together with the fact that the normal distribution is
determined by its moments, provides a particularly brief proof of the cen-
tral limit theorem. Namely suppose that X, X,, - -- are independent
and identically distributed with E{X} =0 and var {X} = 1. Suppose all
moments exist for X. Consider
S, =X + - +X)Nn 3)
Then
k
cum (S, } =n cum (X} / n?
which tends to O for k£ > 2, as n tends to infinity, and in consequence S,

has a limiting normal distribution.
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An error bound may be given for the degree of approximation of the
distribution of a random variable by a normal, via bounds on the cumu-
lants. In Rudzkis et al. (1978) the following result is developed. Con-

sider a variate Y with mean 0 and variance 1. Suppose that

H(k!)l+v
Icumk [Y]| < _A_k——Z-—
for some v 20, H 2 1, then in the interval 0 < u < &/H
18H

sup|Prob (Y <u} - ®u)l < 5
u

where

§= |2

71 6
In the case of a sum, such as (3), one can take A = n for example.

1/(142
1[\/5/3] (1+2%)

3. Time series case. Consider a stationary time series X (¢) with
domain ¢ =0, 1, +2, ---. If the k—th moment exists, from the sta-

tionarity, the moment function

E{X@+uy) - X@+u_DX (@)}
will not depend on ¢, nor will the associated cumulant function

cpuy, * 0 uy_y)

=cum (X (t+uy), - - X(t+u,_1).X (1)) 4)

The Fourier transforms of these ¢, (.) give the higher-order spectra of the
series. These functions may be estimated given stretches of data.

It was indicated, by property 5 above, that a joint cumulant measures
statistical dependence. This suggests formalizing the intuitive notation that

values at a distance in time are not strongly dependent via

S T ey )] < oo Q)

u Byt
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for k =2, ---. It is now direct to provide a central limit theorem for

sums of values of a stationary time series. One has

cumk[iX(t)/\ﬁ'_}
1

=3 - Tyt Ly ) I T

1 U

=3IT - Tl | 1T
tlu, Up-y
=Y co(u) k=2
u
and

-0 k>2
following (5), giving the limit normal distribution.

Another aspect of the use of cumulants is that a calculus exists for
manipulating polynomials in basic variates. Suppose that
Y =8(X1, et vXL)
=Z.:ail iLX‘]l et XiL (6)
1
One has directly from (6) that
E(Y}=XBm, ... m EXT" -+ X[*)
m
but perhaps more usefully, there are rules due to Fisher, see Leonov and
Shiryaev (1959), Speed (1983), providing an expression
cum (Y} =3 Y cum{Xj :jJ€EGY) - cum{Xj 1 J ecp}
(]
where 6 = (6, - - -, Cp) is a partition of subscripts into blocks and the
Yo are coefficients.

A time series analog of an expansion, like (6) for ordinary variates, is
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provided by the Volterra expansion

Y()=apg+ Y a(t-u)Xw)+ T ay(t-upt—-uy)X @)X @)+ - (7)
u

Uyuy
Using the Cramer representation of the process, namely

X(@t) = [ e dzy ()
(7) may be written

ag+ [ e ,NdzZy Q) + [ e" M 4)AyA)dZy A )dZy () + -

in terms of the Fourier transforms of the a (), a5(.), - - -. This form
often simplifies the development of particular analytic results.
Consideration now turns to the use of moments and cumulants in the
identification of nonlinear systems. In the case of a polynomial system
like (7), Lee and Schetzen (1965) develop estimates of the functions

a(.), ay(.), - - - via empirical moments of the form

T-1
1 > X(@+up) - X@+H)Y (@)
T t=0
for the case that the input, X (.), is Gaussian white noise.

For the case of stationary Gaussian input and a quadratic system

Y()=ag+ Y a\(t-u)X )+ 3 a(t—ut—u)X (u )X (uy) + noise
u Uy .uy
Tick (1961) developed an estimation procedure as follows. Define the

cross-spectrum and cross-bispectrum via
cum {dZy (\).dZy ()} = SBQ+L)f xy (WA Ad

respectively. One has

fyx (7\) =A 1(7\)fxx(x)
Fxxy CA=Ap) = 2A5(-A =) xx (M) xx W)

relations from which estimates of the transfer functions, A, may be
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developed, based on estimates of the spectra that appear.
Another system that may be identified, in a like manner, takes the

form, for input X (.) and output Y (.),

U@)=23 alt-u)X(u)

Vi)=GU@))

Y@)=p+ Y b(t~u)V(u)+ noise

i.e. involves an instantaneous nonlinearity, G [.], and two linear filters. In

the case that X (.) is stationary Gaussian, one can develop the relationships

frx) = LIAMBM)fxx (W)

fxxy (7\1,)\2) = LzA (‘M)A (‘_)‘Q)B (‘M"M)f}o{ Ob])f)o( (}Q)
where L, L, are constants. See Korenberg (1973) and Brillinger (1977).

Estimates of the identifiable unknowns may be developed based on esti-

mates of the spectra appearing.

4. Point process case. Consider isolated points, T,, scattered along
the real line. Let N(¢) count the number in (0,t] and dN (¢) the number in
the small interval (¢,t+dt]. Typically dN(¢t) will be 0 or 1.

The k—th order product density of the point process N(.) is p,(.)

given by
E{dN(t)) --- dN(z,)}
= Prob {dN(t))=1, - - -, dN(t;)=1)}
=pi(ty, -, )dey - -0 dy
for ¢y, -, 1, distinct and k = 1,2, ---. This relates to the moments
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of the process as follows. Writte N&) = N(N-1) - - - (N=k+1), then the

k—th factorial moment of N(¢) is

4 t
EINO®Y =] - - [pley, -+ 5)dty -+~ dyy
0 0
The corresponding cumulant density is given by
cum (dN(ty), -+, dN ()} = gty - -+, 4)dty -+ dy
fort,, ---, 1, distinct. The k—th factorial cumulant of N (¢) is now
t t
J’ jqk(tl’ cee Lt )dey e di
0 0

In the case of a Poisson process, the product densities will be given by
pe(ty, - )=p(ty) - ply)
with p (¢) the intensity of the process and the cumulant densities will van-

ish for k > 1.

As an example of the use of moments to derive an alternate limit

theorem, suppose one has N,(.), - - -, N,(.) ii.d.copies of a point process

N (.). Suppose they are superposed and rescaled to form the point process

t t
M, (@) =N1(;) + oo +N,,(7)
The k~-th factorial cumulant of this process is

t/n tin

J’ I"qk(’l’ ""tk)dtl dtk
0 0

t
=n(—Yq 0, -+, 0)
for large n, assuming continuity at 0. This cumulant tends to ¢g;(0) for
k =1 and to O for ¥k > 1 and in consquence one has a Poisson limit for

the variate M, ().

5. Extensions. The preceding results and definitions extend quite

directly to the cases of: a spatial process X (x,y), a marked point process

115




XM, o(t—r ;). a hybrid process X (7;) and a line process, for example.
J

6. An example. In this section second-order moments and cumulants
are employed to infer the causal connections amongst some contemporane-
ous point processes.

Consider the stationary bivariate point process (M, N) with points T,
and v, respectively. In what follows an estimate of the product density of

order 2 will be needed. The parameter is defined via

Py ) dudt = E {dM (¢t +u)dN (¢)}

= Prob{dM (@+u)=1,dN(t) =1}
This last suggests basing an estimate on the count

#{Itk—y,—ul<%] (8)
for some small binwidth A. Details are given in Brillinger (1976). One
result is that it appears more pertinent to graph the square root of the esti-
mate. In the case that the processes M and N are independent, one will

have p,,n (u) = pppy, Which possibility may be examined via the statistic

(8).

The suggested estimate will be illustrated with some neurophysiologi-
cal data. Concern in the experiment was with auditory paths in the brain
of the cat. To collect data, microelectrodes were inserted with location
tuned to sound response. Data was recorded when the neurons were firing
spontaneously. Also responses were evoked experimentally by 200 msec.
noise bursts, that were applied every 1000 msec., via speakers inserted in
the ears. The firing tiraes of 8 neurons were recorded. Figure 1 provides
the data itself for 4 selected cells, 2 in the case with stimulation, 2 when

the firing is spontaneous. Each horizontal line plots firings as a function
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of time since stimulus initiation in a 1000 msec. time period. The
stimulus was applied 505 times in these examples. In the stimulated case
one notices vertical darkening corresponding to excess firing just after the
stimulus has been appiied. Neurophysiologists speak of locking. In the
spontaneous case no locking is apparent. There is some evidence of non-
stationarity in this case.

Figure 2 provides the square root of a multiple of (8). The horizontal
dashed lines are *2 standard errors about a honzontal line corresponding
to independence in the stationary case. One infers that the cell pairs are
associated in each case. However in the stimulated case one has to wonder
if the apparent association of units 6 and 7 is not due to the fact that the

cells are being stimulated at the same times.
Fourier techniques provide one means to address this concern. Write
—iAT
dil) =3 e "™
k "
dyh) =Y e

l
for the data 0 < 1,, v, < T. For A # 0 one has

E (dfy(Mdi (M)} = 21T fry V)
with f,n (.) the cross-spectrum given by

1 _:
fun ) = EJ e ‘MqMN(u) du
A useful quantity for measuring the association of M and N may now be
defined. It is the coherence,

IRy W12 = 1 fpiy 121 Fagng OF oy )

with the interpretation

lim Icorr {df, (M), dE (M)} 12

T 5o
It satisfies 0 < IRy, (A)1% < 1, with greater association corresponding to
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values nearer 1. Figure 3 provides coherence estimates for the cell pairs
of Figure 2. This evidence of association is in accord with that of Figure
2. The dashed horizontal line provides the 95% point of the null distribu-
tion of the coherence estimate.

To return to the driving question of how to "remove" the effects of
the stimulus, one can consider the partial coherence. This has the interpre-

tation

lim lcorr {d}y — od], df - pdf}1?

T oo
with a, B regression coefficients and S referring to the process of stimulus
times. Suppressing the dependence on A the partial coherence is given by

IRyn 15 |2 where

Run — RysRsy

V(I=1Rys 12)(1- 1Ry 1)
Figure 4 provides the estimated partial coherence £ neurons 6 and 7 in

Runis =

the stimulated case. The level apparent in the top graph of Figure 3 has
fallen off substantially suggesting that the association evidenced in Figures
2 and 3 is due to the stimulus.

For interests sake Figure 5 provides the coherence estimate for neu-
rons 3 and 4 in the case of applied stimulation. One might wonder if they
would become more strongly associated in the presence of stimulation.

The results do not suggest that this has happened.

7. Conclusions. In summary, moments and cumulants may be
employed to develop approximations to distributions, approximations such
as the nomal or the Poisson. They may be employed in system
identification. They may be used to infer the "wiring" diagram of a col-

lection of interacting point processes.
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The approach presented is nonparametric, not based on special sto-
chastic processes described by finite dimensional parameters. Brillinger
(1991) provides a variety of references conceming the work pre 1980 on

higher moments and spectra.

Acknowledgements. The neurophysiological data were provided by
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Figure Legends

Figure 1. Rastor plot of the firing times of 4 neurons in successive 1000

msec. periods. There are 505 horizontal lines of firing times.

Figure 2. The square root of a multiple of the quantity (6). Were the
processes independent and stationary then about 5% of the values should

lie outside the band defined by the two horizontal dashed lines.

Figure 3. Estimated coherences of cells 6 and 7 in the stimulated case and

3 and 4 when the firing is spontaneous.

Figure 4. Estimated partial coherence of cells 6 and 7 "removing" the

effect of the stimulus.

Figure 5. The estimated coherence of cells 3 and 4 in the case of stimula-

tion.
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Moment-based oscillation
properties of mixture models
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and
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Abstract

Consider finite mixture models of the form g(z; Q) = [ f(z; 8)dQ(6)
where f s a parametric density aud @ is a discrete probability mea-
sure. Aun important and difficult statistical problem concerns the de-
termination of the number of support points (usually known as com-
ponents) of (Q from a sample of observations from ¢g. For an important
class of exponential family models we have the following result: if P
Las wore than p components, and @ is an appropriately chosen p
compeonen! approximation of P then g(z; P) — g(z; Q) demonstrates a
presciibed sizn change behavior, as does the corresponding difference
in the disrribution functions. These strong structural properties have
inplicarions for diagnostic plots for the number of components in a
finite mixture,

1 Introduction

Consuder a fanuly of univariate probability densities f(z;8), with respect to

some @ fnite mcasure d-{r). parameterized by 8 € Q. Frequently, interest

“The anthers were sapported by NSF grants DMS-9106895 to Lindsay and DMIS-
i"”“:l’:; tor RUI'(I' r
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lies in mixtures of such densities. The random variable X is said to have a

mixture distribution G(-; Q) if X has density

9(2:Q) = [ 7(2:6)dQ(6), (1)

and the mixing distribution @ is a probability measure on 2. If Q has a
finite number of support points ¥ = v(Q) then we say Q is a finite mixing
distribution and we write Q, = Y. 7,8(6;) with 6,,...,6, being the support

points (often called components) and my,..., 7, being the weights.

A problem of longstanding interest in such models is inference on the
unknown value of v(Q). At the simplest level, this is the problem of deter-
mining if v equals 1. the or ¢ mponent model, or is greater than 1, the
multicomponent model. ' .ked (1980) presented imporiant results for this
problem when the comnponent densities f(r;6) are one parameter exponential
family. We extrad his results in two directions, generalizing to the discrim-
ination between v = p versus v > p, and moving beyond the one parameter
exponential family to the normal mixture model in which each component

has a different mean, but the same unknown variance.

Here we summarize Shaked’s sign crossings results. Suppose we wish to
contrast a multicomponent model g(a; Q) with a plausible one component
model f(r:#). Choose § = 8* for the one component model so that the

observed variable X has the same mcan under both densities:

/.rg(.r: N d+(v) = /If(.r:f)')d',(r).

Our notation for this last cquation will be E[X;Q] = E[X:6]. Shaked

showed that o(r: Q) — f(r:67) has exactly two sign changes. in the order
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(+.—.+).as r traverses the sample space. That is, g(z; @) has heavier tails
than f(r:67). Moreover, the difference in distribution functions G(z; Q) —

F(+.6%) has exactly one sign change, in the order (4, ).

We extend his results as follows: let P, the nominal true mixing distribu-
tion, satisfy v(P) > p; choose @,, a candidate p-point probability measure,

such that 1t satisfies
EXtPl=EX%Q,]. k=01....2p—1. (2)

(Iu Section 2 we show how to solve for Q,.) Then, in Theorem 3.2, we show
that ¢{: P)—u(r. Q) has eractly 2p sign changes in the order (+, —, -+ -, —, +),
unless 1t 15 xlentically zero (the case of nonidentifiable P). An exact sign
change result for the difference in distribution functions is also given in Sec-
tion 30 In Secnion 4L these results are extended to normal densities with

unknown vatiance,

Before procecding to the mathematical verification of these results, we
ofter a few bicf comments on their potential application.  In Figure 1, we

plot ules Py i Q)] /'\v,« gl D)

for the case when f/r;#) is Poisson, P
puts mass I3 cachat (1.3 and 3}, and (2, 1s constructed to match moments
as spectfied in (200 We note the clear trimodality of this function. in constrast

to the nnimodality of the density g(r; P) (Figure 2).

Shake D dewmrmetrated that his sign change results could be used for di-
agnestio cliecks to determine af the data were from a mixture of specified
expows ntiel famly densines rather than a one component model.  These
pleas wore Poorhe devcloped o Lindsav and Roeder (1992). When interest

bes masseosanzs the number of components ina finite mixture. the oscillation
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results obtained in this article have clear implications for diagnostics plots.
In a companion paper these results are used to develop diagnostic plots for

the case of normal mean mixtures with unknown variance (Roeder 1992).

2 Background
2.1 The models u. der investigation

We will be interested in component densities f(r; ) where both r and 8 have
ranges in the real numbers. say £ € T C R and 6 € [I,u] C Q. Furthermore,
fo4) satisfies regalarity conditions which will be expounded in this subsec-
tion. Although the most important application of the results to follow is the
one parameter exponential family. the results readily extend to other cases

of interest for which we need the following terminology.

A read function of two variables, K'(r. 8), ranging over linearly ordered sets
T and Qs said to be totally positive (TP) if certain determinantal inequalities
hold (KNadlin 19680 p 11, 13). For instance. the functions exp(fzr) and I(z <
#) are TP, Tu addition. many density functions occuring in statistical theory
are TP. For example. the one parameter exponential family with density
function W{r:R) = exp{fzr —*(8)}. Other examples include the noncentral-t
and noncentral-\ 2 densities. In fact. all of the densities mentioned above are
strictly TP (STDP: Karlin 1968, p. 12}. For a more extensive list, see Karlin
1968 p. 1175 We will say that f{r:#) is an STP-model if f(x:8) is strictly

totallv positive in o and 6.
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2.2 Background on moments and exponential fami-
lies

In order to apply our results in a particular model we need to establish two
important structural features for the component densities f(z;6). Our first
requircment 1s as follows: suppose that P is a mixing distribution with p
or more support points. Then we need to be able to construct a p-point
distribution @, such that the first 2p — 1 moments of g(z; P) and g¢(z; Q,)
match. satisfving (2). Fortunately, there exists an important class of expo-
nential families (the quadratic variance class) in which @, satisfying (2) can
be shown to exist. This class includes the normal, gamma, Poisson and bi-
nomial distributions. The following is a brief review of techniques found in

Lindsay (1989).

In the quadratic variance family of exponential family models (Morris
1983). for each &, there exists a polynomial of degree k, call it & (), such
that

J &)1 (:0)d3(2) = (e = peo)* (3)
for nican value parameter g, The choice of pg is arbitrary so we set it to
zero. For example. in the Poisson with mean p. E[X] = p, E[X(X - 1)] =
s ELN(X = 1)(X - 2)] = ¢® and so forth. In addition, a classical moment
result indicates that for a given distribution P with no fewer than p-points
of support. there exists a unique distribution Q, with exactly p-points of

support such that

/;,“JQ,_,(;,) - /,,"(11’(/,). k=1....2p—1, (4)

Thus integrating both sides of (3) with respect to dQ () and dP(y). and
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using (4) yviclds
El&(X); P) = E[&(X);Q,), k=1,...,2p - 1. (5)

Finally, the map taking (1,z,...,2%71) — (&(z),&i(z), ..., &2p-1(T)) Is in-

vertible, so (5) implies (2).

More details on solving (5) for @, are given in Lindsay (1989). The solu-
tions can be obtained algebraically for p = 2. For arbitrary p, the problem

involves solving a degree p polynomial for its p real roots.

3 One parameter models

In this section we obtain sign change results for one parameter models. The
following notation (Karlin 1968, p. 20) will be used. Let a(z) be defined on
I where I is a subset of the real line. The number of sign changes of a in
1s defined by

S7(a) = sup S [a(z1),...,a(Tm)] (6)

zero terms heing discarded, and the supremum is extended over all sets
1 <1< ...<2y (z;€1); m<oc. (7)
We assume throughout that f(z;6) is an STP kernel and that P and

Q, satisfy (2). The following notation will be used throughout this section:

g =g(a:P). g, = g(r;Q,). Gy = G(xr; P) and G, = G(z: Q).

Remark Iu the following result we will give exact sign change results for

g1 — g2 with the proviso “the difference 4, — ¢, is not identically zero”. If
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such an equality in densities occurs, 1t is clear that there is an identifiability
problem: both P and Q, are gencrating the same distribution. The results of
Lindsay and Roeder (1992) can be used to determine exactly when this will
occur. If the sample space 1s infinite, 1t will not occur. If the sample space has
N points, then p-point distributions @, are identifiable when p < (N —1)/2,
and so gy — g, cannot be identically zero. If both P and @, have more than
(N —1)/2 points, then g, — g, cannot have exactly 2p sign changes, since we
can have at most .\ — 1 sign changes as we traverse the sample space. Thus

our result proves that P and @, generate the same density. [ |

Lemma 3.1 Provided g, — g, is not identically zero, S™(g1 — ¢2) < 2p.

Proof Define the measure d\(8) by

dx(6) = d(P + Q,)(6).

Let
" (h) = P{AN/[P({8)) + Q,({8))] if6 € {6:,...,6,)
P 1 else,

and
w,_<@MﬂWmWD+QMHHneew%“ﬁg
= 0 clse.

Then p* and ¢° are versions of the Radon-Nikodym derivatives dP/dy and

dQ, 1A\ so that gy = g = [ f(2:0)7(8) = ¢*()1d(P + Q,)(A).

We now apply Theorem 3.1 (L) of Karlin (1968). noting that p™(68) —¢*(#)
equals one except possibly at the support of Q. where it can be negative.

Henee 1t undergoes amaximum of 2p sign changes.  Karlin's result then
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implies that integration with respect to the STP kernel f(z;6) will result in
a function. g, — g,. with no more sign changes in r than p*(6) — ¢*(6) has
in # relative to dy. This establishes an upper bound of 2p sign changes in

g1 — g2 N

Theorem 3.2 Provided g, — g, ts not tdentically zero, S~ (g1 — ¢2) = 2p,

with sign changes in the order (+,—,...,—,4).

Proof From Lemma 1, we obtain an upper bound on the number of sign
changes of 2p. Because fz%(g1 — ¢2)(z)dv(z) =0, for k=1,...,2p— 1, any

polynomial A{+) of degree < 2p — 1 satisfies

/A(I)(gx — g2)(x)dr(z) = 0.

Suppose S7 (g1 — g2) € 2p— 1. Then we can construct a polynomial A(z)
that matchies g — ¢» 1n sign (1.e.. it has single roots exactly at the roots of
g1 — g2). Tt follows that 4(z)(g1 — g2) > 0, and since it has zero integral
it must be zere except for a set of ~-measure zero. Hence either g; = g2, or

g1 — @2 has 2p sign changes. |

Remark Axis clear from the proof for this result, our oscillation results still

k.-x

hold if we replace 2% in (2) with any system of functions ax(z). such as r*e¢~=,
provided that one can construct a polynomial A(r) = ¥ arar(z) which has
anyv prespecified set of 2p — 1 zeroes. Such an approach could be useful in
mmproving on the robustness of the sample moments in applications by using

k

bounded vartabdes such as ag(r) = 2%¢~*. The next theorem. however, uses

the special form of o5 L
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Theorem 3.3 Provided G, —G, ts not identically zero, S~ (G~ G,) = 2p-—-1,
with sign changes in the order (+,—,...,+,—). The roots occur between the

roots of g1 — ¢2.

Proof An upper bound is obtained on the number of sign changes by ap-
pealing to the sign change behavior of ¢y — g2. The function G; — G, is

increasing on the intervals [a, b] where g; — g; > 0:
Gi() = Ga(8) ~ (Gi(a) = Ga(@)) = [ I[a <z < B] (g — 92)(z) do(z) 2 0.

From this it follows that G; — G, has at most one crossing in each interval
where ¢g; — ¢> is constant in sign. but has none in the first or last interval.

Hence S7(G; — G;) < 2p — 1. Integration by parts gives

0= /ra’(Gl —Ga)(z) = /[G2 — Gi)(z)dz,

and more generally
0= /r"d(Gl — Go)(z) = /x"-l[cz — Gy)(z) dz,

up to k = 2p—1. Now, follow the proof of Theorem 3.2. If G, — G, had
2p — 2 or fewer sign changes, a polynomial A(z) of degree 2p — 2 could be
constructed with matching signs. Hence A(z)[G; ~ G,](z) > 0, but has zero

integral. The result follows. - B

For continuous X, a diagnostic plot based on a nonparametric empirical
analog of G; — G, can be constructed directly. Let F,,. the empirical distribu-
tion function. be an estimate of the alleged distribution G, and let G, be an

estimate of G constructed by using the method of moments estimates of the
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p-component model. Naturally, F,, and éz have 2p — 1 moments in common.
It follows that if F,, — G, has the appropriate sign change behavior, then
the data provide some support for using more than p components. On the
other hand, if a p-point mixture is the correct model, then the asymptotic

properties of F, — Gy can be obtained from empirical process theory.
4 Normal Mean Mixtures with Unspecified Variance

In this section we consider a mixture model of great interest — the normal
mean mixture. We use the following notation: let f(z;u,7) denote the den-
sity of a N(p, 7) random variable and let ¢(z;Q,7) = [ f(z; 1, 7) dQ(p) de-
note a mixture of normals with corresponding distribution function G(z; @, 7).
If 7 were known. then this is just a special case of the previous section: how-
ever, in practice. 7 will typically be unknown and hence we treat it as a free
parameter. In this section we extend our results to this case. We first present
an existence theorem. due to Lindsay (1989), which extends the classic mo-

ment results presented in Section 2 to normal mixtures.

Theorem 4.1 [f Q is a distribution with more than p-points, then there

exists a uniquc p-point distribution Q, and variance 7, > T such that
/IHZG(.I-;Q,,\TP) - /:rde(x;Q,f) for k=0.1,....2p.  (8)
Proof Wlile this is not explicitly stated in Lindsay (1989). it is a conse-

quence of Lemma 3A and Theorem 5C. In the latter. replace the empirical

moments with the moments of X under G(+: Q. 7). [ |
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Theorem 4.2 If (Q,,7,) satisfies (8) for Q@ = Qpy1, a p+ 1-point distribu-
tion, then
9(z: Qpr1,7) — 9(7; Qp. Tp)

has ezactly 2p + 2 sign changes, occuring in the order (—,+,...,+,—).

Proof Since 7, > 7, we can represent the above difference as

9(z;Q,7) — g(z;Q;, 7)

where @} is the convolution of @, with a normal distribution with mean zero
and variance 7, — 7. By the same argument as in Lemma 1, this means there
are a maximum of 2p + 2 sign changes. The polynomial argument used in
the proof of Theorem 3.2 can now be used together with (8) to show that
there are at least 2p 4 1 sign changes. Moreover, since @} has more mass
in the tails than the discrete Q4. the difference g(z;Q, 1) — g(x; Q;, 7) will
have a negative sign in both tails, and so must have an even number of sign

changes. hence 2p + 2. [ ]

Theorem 4.3 G(r:Q.7) — G(z; Q. 7p) has ezactly 2p + 1 sign changes, in
the order (—. +... ., +).

Proof A similar argument to Theorem 3.3. |

Graphical techiniques, such as the normal scores plot (Harding 1948,
Cassie 1954) and the modified percentile plot (Fowlkes 1979) have played
an important role in identifying whether data follows a mixture of two nor-
mal distributions. The geometric characterizations obtained herein extend

the arsenal of potential diagnostic plots for normal mixtures.
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5 Discussion

Our results above, in the normal case, indicate that

9(z; Q2,7) — g(z; 1, 02)

has 4 sign changes in the order (-, +, —,+,~) provided p is the mean of
Q: and 0? = Var(X) = 7 4+ Var(Q,). For this case a supplementary result
1s available from Roeder (1992). If we instead examine the ratio R(z) =
g(r: Q2. 7)/g(a: it,a?), we obtain a function proportional to a bimodal normal
density. By combining the two results we can see that R(z) is bimodal and

that both modes are greater than 1.

In the normal model, with =, = 7, = 1/2, the density g(z;Q2,7) is

bimodal if and only if the two separate supports u; and pu, satisfy |y, —

2] > 27 (Robertson and Fryer 1969). Thus the ratio function 1s much more

sensitive to the existence of two support points than is the density itself.

This sensitivity continues to exist even for very small support weiglts =,.
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Abstract

The normal distribution has long been the usual model for the analysis of multivariate data.
Moment and probability calculations for the multivariate normal are used in applications such
as the construction of confidence sets, the assessment of error rates in signal processing, and the
construction of optimal quantizers. Recently, the family of elliptically contoured distributions,
which includes the normal, has been extensively studied. In this paper, we discuss moment and
probability calculations for this broader class, paying particular attention to the approximation

of tail probabilities.
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1 Introduction

The normal distribution has long been the usual model for the analysis of multivariate
data. Moment and probability calculations for the multivariate normal have therefore been well
studied for various cases of interest. In statistics, a common application of such quantities is
the construction of confidence sets for parameters of the normal distribution. Other examples

include the assessment of error rate probabilities in signai processing, the construction of optimal

the outputs from a zero-memory non-linear device with Gaussian inputs.

The general problem is still intractable, owing to the great difficulty in evaluating high
dimensional integrals, but advances in computing technology and recent research has yielded
innovative Monte Carlo and numerical integration techniques. These advances have widened
the scope of such investigations to include other multivariate distributions. For instance, there
are the elliptically contoured distributions and the multivariate Pearson family of distributions,
both of which include the multivariate normal. Elliptically contoured distributions, in particular,
have been extensively developed: see the collection of papers about them that was recently edited
by Anderson and Fang [2].

In this paper, we study the computation of probabilities and moments for certain elliptically
contoured distributions, and discuss their applications. There are, of course, many classes of
events whose probabilities are of interest, and many functions whose expectations are of interest.
Our focus will be on the evaluation of tail probabilities, and on methods for computing product
moments, and other non-linear functions of the components of the random vector. In Section 2,
we introduce elliptically contoured distributions, and describe their properties. Historically, mo-
ment methods have been associated with Pearson’s family of distributions. Since some elliptically

contoured distributions are also natural multivariate versions of some of Pearson’s distributions,
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we briefly describe this connection also. In Section 3, we discuss applications of tail probabili-
ties, and describe methods for approximating them accurately. These methods include Monte
Carlo with importance sampling, and asymptotic approximations that generalize Mills’ ratio for
the normal distribution. In Section 4, we turn to moment calculations for elliptically contoured
distributions using one of three tools: the characteristic function, a stochastic representation,
and a certain partial differential equation satisfied by sufficiently smooth elliptically contoured

densities.

2 Elliptically Contoured Distributions and Pearson Families

A p-dimensional vector X has an elliptically contoured distribution if there is a non-negative
definite matrix £ = (0y;) such that the characteristic function of X is f(t) = e''#4(1'St), where

¥ is a real-valued function on R4 = [0,00). Then X has the stochastic representation
X = p+ V70, (1)

where p is the center of symmetry, the radial part 7 is a non-negative random variable, and
Up is uniformly distributed on €, the surface of the unit sphere in p-dimensions; r and U, are
independent. The matrix £'/2 is a square root of X: for computations, it is convenient to take
©!/2 to be the lower triangular matrix from the Cholesky decomposition, or the non-negative
definite symmetric square root derived from the spectral representation of ¥. When X has a

density f, it is of the form

flzim,B) =157 9(Q), (2)

where Q = Q(=, p.L)=(z - “),Z-I(I ~p)g: Ry - Ry,

Qp /(;m rP-lg(Tz) dr =1, (3)
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and a, is the area of Q,; the level curves of f are ellipses determined by {z : @ = c¢}. In this casc,
7 has the density h.(r) = a,rP"1g(r?). Examples of elliptically contoured distributior< inci .le
the normal, for which g(r) = ¥(r) = e~"/?, and the p-variate ¢ distribution with v degrees of

freedom, for which

Soulzip,T) = %(1 +QJv)P+2, (4)

Another example is due to Iyengar [12] (see also [15]):

okl B1) = T r S (@) exp(- Q). Q

where n > 0 and k > 0. When k = 0, (5) yields the normal distribution. For the bivariate
case, Kotz {20] has also studied this family. The uniform distribution on Q, is yet another
example which will be used for moment calculations below; it does not have a density. For
further discussion of elliptically contoured distributions, see Anderson and Fang |2], Das Gupta,
et al. (8], and Cambanis, et al. [5].

In one dimension, Pearson’s family of distributions is defined by the following differential

equation satisfied by their densities (see Cramér [7]):

d log f(z) _ r+a (6)
dz - bo+b1(€+b21§2'

Within this family, the first four moments determine the distribution. Several types of Pearson
distributions (depending on a, b, b, and b;) have been identified. In addition to the normal,
the common types are the beta (Type II), gamma (Type III), and Student’s t (Type VII). The
elliptically contoured distributions given by (4), and (5) are multivariate versions of Types VII
and [III, respectively. For example, when R = I and g = 0, the density for the p-variate t

distribution with v degrees of freedom, satisfies the following differential equation:

(ptv)z

Viog fp.u(2:0,1) = - B

(7
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However, there is an important difference between (4) and (5). For (5), if 4 = 0 and k£ > 0, then
the density at the origin is 0, and the modal value, or peak, of the density occurs on the surface
of the ellipsoid {z : z’S7'z = kn}. On the other hand, the density in (4) has its peak at the
origin, and it is unimodal. Several results that apply to the normal and (4) do not generalize to

(5); see Tong [34] for further details.

3 Tail Probabilities

If X is a random variable with density f and cumulative distribution function F, the tail

probability of X refers to
oo

=1-Fo)= [ f2)dz (8)
for large values of a. In many statistical applications, such as hypothesis testing, the tail
probability of interest is around 0.05. For such cases, the computation of, say, p-values is usually
straightforward. In other applications, especially in engineering, much smaller probabilities are
of interest. For instance, in signal processing, the tail probability arises as the error rate of
a complex communications system (Scharf [30], Wessel, et al. [35]); and in reliability theory,
it arises as the failure rate of a system component (Lawless [22]). Often such systems have
redundancies built into them, so that their error or failure rates are very low. A simple model
of failure regards X as an overall index of stress, and considers very large values of the failure
threshold, a.

[n this formulation of the problem, two difficulties arise. First, the usual quadrature rules
and Monte Carlo methods for evaluating @ are not sufficiently accurate, so specialized methods
are needed for evaluating tail probabilities. We will turn to some of these methods below. Next,
the basis for the choice of probabilisitic model (that is, F') is tenuous. This is because for a
complex system, the theoretical derivation of F based on individual component characteristics is
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intractable; also, data to estimate 8 is sparse since the event of interest is rare. While information
about the central region (near the mean or median) of F' is usually available, the tail behavior
is usually unknown, so extrapolation is necessary. One way of addressing this problem is to
consider a wide range of plausible models for the tail behavior to derive a range of values for the
tail probability. For one example of just such an approach, see Lavine [21], who studied shuttle
O-ring data.

Multivariate versions of this problem arise in similar fashion: for instance. a system with
two components may fail when each component’s stress exceeds its respective threshold, leading
to the failure probability P(X; > a1, X2 > a2). A number of new difficulties also arise. First,
multiple integration is still a hard problem in general, so with few exceptions multivariate tail
probabilities are not well studied. Also, a tail region can take on many shapes, for example,
{z: 21 > a1,2z9 2 a3}, {2 : auz1 + azz2 > a}, or {z : 22 + 22 > a%}. Below, we restrict
attention to convex regions that are far from the center of the distribution, eliminating the last
example from consideration.

There are two main sources of error in assessing tail probabilities. The first is numerical:
it is generally hard to evaluate a small quantity with small relative error. For a deterministic
method, if 6 is an approximation to 6, the relative error is (§ — 8)/8. For a Monte Carlo method,
the coefficient of variation (the ratio of the standard deviation to the mean of an estimator) is
a measure of the relative error. If the unbiased estimator 8, of 8 is an average of n independent

replicates, its squared coefficient of variation (cv?) is

- Vi 9 A2
cv?(8,) = 31;9(20,,) = ',1; [Eg—l) - 1] . (9)

Below, we study the use of Monte Carlo with importance sampling to derive estimators for

which the c¢v? is small. If B is a tail region, and f is the density, importance sampling uses the
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expression

o [ 1)

= [, se@ = [ ie)g(z)de, (10)

for some “sampling density” g to get an unbiased estimator which is the average of n independent
replicates (over the set B) of the likelihood ratio !(Y'), where Y has density g. We seek those ¢
for which the cv? is bounded as the tail probability tends to zero.

The second source of error is statistical: the uncertainty in the choice of the model F' makes
the tail probability estimate uncertain, even if there were no numerical error. There are several
ways to address this issue. One is to introduce a plausible family of models, and compute a
range of tail probabilities for that family. Another is to follow the approach of Johnstone [19],
for the Pearson family. He estimates the parameters of the family from available data, and
then provides an estimate of a given quantile with its standard error. Yet another approach is
Bayesian: first model the uncertainty in F' by putting a prior on it, and then use available data
to compute the posterior distribution of the tail probability.

We start with the univariate case to motivate the multivariate case below. If X has density
f, PHopital’s rule says that with suitable regularity, the asymptotic behavior of P(X > a)/ f(a)
is the same as that of r(a) = — f(a)/f'(a). The regularity conditions are that f'(t) # 0 for all
sufficiently large ¢, and that the ratio r(a) have a limit as a — oo; these conditions are met in

many cases of interest. Writing

[tz = r@sta) [ 2Dz, (11)

it is clear that (under the same regularity conditions) the last integral in (11) approaches 1 as
a — oc; thus, it is bounded away from 0, and estimating it with good relative accuracy can
be done using importance sampling. This heuristic has been extended by Gray and Wang [11],
where the generalized jackknife is used for evaluating univariate tail probabilities. The method

suggested below may be regarded as a Monte Carlo analog of that procedure.
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For the normal distribution, (11) yields

M) [P ta) M) [T ey
/., #(z)dz = & /0 s = a/U 20e~%dg (12)

which suggests the estimator

6= ¢Eza)e—T?/2, (13)

where T has the exponential density, ae~*' for t > 0. Now, let &(z) and ¢(z) denote the

univariate standard normal distribution and density functions, respectively, and let

M(z) = ‘ig_(;? = %/ow e~ /2 et gy (14)

denote Mills’ ratio. Since M is a convex, decreasing function (Iyengar [13]), the following

inequalities are easy to prove:

z 1
— - . 15
1_’_12<M(:z:)<xfor:::>0 (15)
These inequalities, in turn, imply that
cv?(d) = M 1~ 2 (16)

M(a)2a/2 a?
as a — 00, so that the cv? tends to zero as a increases. This estimator results from the sampling

density g(t) = ae~*(t=%) for t > a. The deterministic analog of this result is that

$(a)fa—®(-a) 1 1
®(—a) " aM(a) 1< a?’ (17)

0<

so that the relative error in approximating ®(—a) by ¢(a)/a decreases to zero as a increases.
The phenomenon observed in (16) is quite general: for a wide class of problems, the coefficiert

of variation actually tends to zero, hence the relative accuracy improves as the threshold a

increases. In addition, this method is feasible since the calculation of r(a) depends on the

differentiation of the density rather than its integration; since the behavior of the tail probability
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is already captured by r(a) f(a), the evaluation of the remaining integral by Monte Carlo provides

a correction term. In practice, either (11) or one of the following two expressions for 8 is also

useful:
_ fla+z/a) af(a+a:c)
0= (@)@ [ grrlde = r)fta) [ LA (18)

Two other examples illustrate this technique. The first involves the generalized inverse

Gaussian distribution, whose density is

G

f(t ' O.’,,B, /\) = 2K,\((aﬁ)1/2)

t*lexp [—%(at + ﬂ/t)] , for t > 0, (19)

where K, is the modified Bessel function of the third kind with index A. The parameter space
is the union of the following three sets: {a > 0,8 > 0}, {a =0,8>0,A <0}, and {a > 0,8 =
0,A > 0}. This family includes the gamma, the inverse Gaussian, the hyperbola distribution,
and their reciprocals, in the sense that if X has density f(t | a,3,), then X ! has density

f(t] B,a,—2X). For the case @ > 0, 8 > 0, this method yields the estimator

(20)

6= %f(a | a,ﬂ,/\)eﬁ/z"(l + %)’\‘lexp [ 1 af ]

2 (aa + 27))’

for sufficiently large a, where T has a standard exponential density. The second example is the
t distribution with k degrees of freedom, with density fi(z) proportional to (1 + z2/k)~(+1)/2,

for which the estimator is

-

2 2 (k+1)/2
(k + a?)Y J ’ @1)

= i@ [Tl_w”z_
where Y has the Pareto density k/y**! for y > 1. In both cases, the cv? decreases to zero as
a — o0o. Detailed proofs of these and related results are given in [17].

We now turn to the multivariate case. In 1962, Slepian [32] proved the following inequality.
Let X ~ Ny(0,% = (0i;)) and Y ~ Np(0,T = (7;;)) with g;; 2 7ij and 0y; = T;; then for any

vector @, P(X > a) > P(Y > a), where z > a means that z; > a; for all i. Slepian derived
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this result using Plackett’s identity (see Section 4 below) in a study of one-sided boundary
crossing problems for Gaussian processes. Since Slepian proved his inequality, his result has
been generalized in a number of ways. For instance, the inequality holds for all elliptically
contoured distributions: see Das Gupta, et al. [8] and Tong [34] for such results.

When o;; > 0 for all ¢ and j, the inequality Pg(X > a) > Pi(X 2> a) yields a lower bound
which can be easily computed for the normal, since then it is a product of univariate normal
probabilities. However, this lower bound often gives a poor approximation (see Iyengar [14]), so
that Slepian’s inequality is more useful for theoretical investigations. Thus, in this section, we
describe alternative methods that provide good approximations.

Suppose that X is a p-variate vector which has an elliptically contoured distribution with
density |E]“% g(2'E71z); further, let term “tail region” refer to a closed convex region B
that is far from 0 (of course, B should have non-empty interior, else the probability will be
zero). If ¥ = L'L is the Cholesky decomposition of X, then Z = L7!X has the density
f(z) = f(20,1) = g(2'z), and P(X € B) = P(Z € A = L™ 'B). Since A is closed and
convex, it contains a unique point, a, that is closest to the origin: |a|<|z|, for z € A, and A is
contained in the half plane {z : 2’a > a’a}. Since Z has a spherically symmetric distribution,
A can be rotated so that a = re;, where €; is the unit vector in the z; direction, and r =|a|.
Note that r = r(A) depends upon the set A; for notational convenience, this dependence will be
suppressed. Next, if 8 = La, then 8 minimizes the Mahalanobis distance, (z'S~'z)'/2, of points
in B to the origin; also, B is contained in the half plane {z : 2’S-'8 > #’£-18}. Of course,
the problem of finding 8 is a quadratic programming problem which can be solved using known
techniques. For any set A, matrix D, and vector c, let DA + ¢ denote the set, {Dz +c¢: z € A}.

To estimate § = P(Z € A), ordinary Monte Carlo averages n independent replicates of

I(Z € A), where [ is an indicator function. This estimator’s variance is (8 — §?)/n. An




alternative approach is to use f(z — a) as a sampling function (Wessel, et al. [35] refer to this

as improved importance sampling). The expression

f(z) f(z+a)
6 = /f( —a)dz = /_a () (22)

suggests the unbiased estimator

AL

"= "1

I(Z€A-a). (23)

If g is a decreasing function — that is, f is unimodal, as is the case with the p-variate normal

or t, but not the family given in (§) — then f(2) < f(z — a) for z € A, and

E(6?%) = A f—(g—(j)—a)f(z) dz< 89, (24)

so that 8 has a smaller variance (and smaller cv?) than ordinary Monte Carlo. However, it can
be shown that for several cases (the normal and the t), the cv? tends to inhnity as & — oo (see
{17]). Thus, we turn to multivariate analogs of the method described in (12) above.

Although a direct generalization of (12) is not available, the analog is to write Ag = A — «,

and

fzta),
Ao f( ) i

and to manipulate the ratio f(z + a)/f(a) to derive an estimator that has bounded cv? as the

0= [ fz)dz= f(e) (25)

region A moves outward to infinity. Just as in the one-dimensional case, there is no generic
method that will work for all g; and unlike the one-dimensional case, the shape of A (or equiv-
alently the shape of B and the dependence among the random variables as given by X) plays
an important role in the choice of sampling function. We now sketch the details for the normal
and t distributions.

For the normal with density ¢,(z) = ¢,(2;0,I), (25) becomes

¢p(z+a) ds = (2m)P=V/2% (a)
4 ¥p(a) a o

0 = ¢,(c) | ol eleln-dg  (u)ydudz, (26)
0
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where u = (z3,...,2p). Next, for the t density fy(2) = f5,.(2:;0,I), a slight modification of (12)

is needed. Let A; = A/ |a] to get

2 (pt+v)/2 2 (p+v)/2
0= @) [ (”* '“') dz= Sl [ (——*ﬂ) de. (1)

v+ |2f? v+ laf?[2]?

Now using the sampiing density which is proportional to |2|~(P**) on A,, we get

v 2y 15]2 (p+v)/2 2
0= (@) el | (———-—("“’””) : (2)

v+ lol?|2]? Clasl

Such expressions provide guidelines on the nature of the sampling function to use for im-
portance sampling. The specific choice depends, as mentioned before, on the nature of 4,
specifically, on the shape of A near the origin (or A; near the point ;). In particular, let
B = {z : z; > b1,z2 > b,}, where the b; are positive; without loss of generality, suppose that
b; < by. When the correlation between X; and X3 is p, the point, 3, that is closest to the origin

(using Mahalanobis distance) is

(b1,b2) if p < bi/b;
B = (29)
(pbayhe) i p 2 b1/bs.

Transforming to the independent case and rotating so that the nearest point, a, is in the €

direction gives

(B'R-16]112,0) if p < by /by
a= (30)

(b2,0) if p > by/ba.
The region A is given in Figures 1 for p < b;/b,, and 2 for p > b;/b;. Since the nature of
Ao = A — a at the origin is determined by the difference p — b; /by, the ratio 4, /b, will be

preserved in the calculations above: in effect, the region B will be moved outward towards

infinity in the direction of the vector b = (b, b2).

{FIGURES HERE}
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We will now provide some of the details for the normal distribution; for a fuller account,
see (17]. When the correlation coefficient p is not large (p < by/b; when b; < b;), the bivariate
sampling function consisted of a product of two exponential densities, and when p is large, the
sampling function consisted of the product of an exponential and a normal. This is intuitively
plausible, since for small p, the bivariate normal density is not far from the independent case,
while for large p, it is not far from the singular case, for which the exponential given in (113)
yields accurate estimates. Transforming back to X (with p;2 = p), the estimators are given by

the following. For p < b,/b,,

$2(b; £)(1 — p?)? e~T'R™'T/2
(b1 — pb2)(b2 — pby) ’

where T' = (T),77) has independent exponentially distributed components with mean vector

(31)

(1 = p2)/(by — pb2), (1 = p?) /(b1 — pb3)). And for p > by /by it is
2oa)e-T((7, 0) € Ao, (32)
2

where T and U are independent with densities |a| e~1®l* and ¢(u), respectively, and Ag =
A — (b2,0) is the translate of the set given in Figure 2. For both of these cases, it can be shown
that the cv? for the estimators given above all tend to zero as a — oo, that is, as the tail
probability diminishes. The proof for the normal case is given in [17]. We omit the proof for
the t distribution. Instead, we turn to the key quantity that is used in the proofs, Mills’ ratio.

Several definitions of the multivariate normal Mills’ ratio are available. The first definition

is due to Savage, [29] for the case of orthants:

P(X € B)

“Il(BvR) = d’ (b R) ’
p\Y

(33)

for X ~ N,(0, R). Another definition is gotten by first transforming to the spherically symmetric

case with Z, A, and a replacing X, B, and 3 respectively. For r =|a| let

P(Z € A)

My A1) = =25

(34)

154




This definition applies to convex regions A, not just orthants. However, the two definitions do

not coincide when B is an orthant. For R # I,

P(Z € A) ( 2 )‘/2 P(X € B)

M AiD) = G- 0gy @iy ~ \BnBl) 6B D)

(35)
so that the two definitions differ in two respects. First, in place of 3, it uses the vertex b;
for example, when (b1,82) = (1,2) and p = 0.95, (61,52) = (1.9,2). This is an important
difference, because when the correlation is high, importance sampling centered at b can be much
worse than that centered even at the origin (see [17]). Second, the new definition has the factor
(27/ | 27 R |)'/?; this is not an important difference, but it does mean that proper comparisons

of the two must first adjust for this factor.

For the multivariate normal, the following inequalities for M, generalize (15):

My(A;T) < TPT,V) € 4, (36)
and
My(A; 1) > % .P[(T,U)E Ao —/A -t;re_"qS(u)dudt]
> E -P[(T U) € Ap] - /oo Ei're""d>(u)dudt} (37)
r { ’ 0 2
1 1
= < _P[(T»U)E Ao] ~ ﬁ] ;

where (T,U) is as in (32). When A = L~!B, where B is a quadrant, explicit expressions for
the bounds in (36) and the first line of (37) are available. Such inequalities are not available for
M;. These inequalities are used in [17] to prove that the estimators in (31) and (32) have cv?
tending to zero as a — oo.

Mills’ ratio for elliptically contoured densities are defined analogously: the numerator is

P(X € B), while the denominator is either ¢,(b; R) or ¢,(B; R) for My and M,, respectively.

In [9], Fang and Xu give a detailed account of M; They show that if X has an elliptically
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contoured distribution given by (2), where g is a non-increasing function, then the function
—P(X € B) is a Schur convex function; they use this fact, along with standard majorization
results to provide inequalities for M;. A detailed study of the analog of M, for other elliptically

contoured distributions has not yet been done.

4 Computation of Moments

In his paper, Brillinger [4] noted that a moment generalizes the notion of a probability, since
the latter is the first moment of an indicator function, which is a building block of integrable
functions. Here, we use the term moment to denote the expected value, when it exists, of some
function of a random vector, that is, E[g(X)] = E[g(X,,...,X,)]. Conventionally, (product)
moments are defined as E [l'[f;l Xik'], where k; are non-negative integers. In this section, we
discuss three methods for computing moments for elliptically contoured distributions. The first
uses the characteristic function when it is available, the second uses the stochastic representation
(1) when the moments of 7 are available, and the third uses several partial differential equations
that are given below. Throughout, let X = u + 7ZY/2U,, as in (1).

The first two methods, which are due to Li [23], are of course equivalent; computational
convenience dictates the choice of method. Let the ¥*" moment (when it exists) of the vector

X be given by the matrix I'x(X), where

. EXX'®X...0 X'] if k is even
Lu(X) = (v3)) = (38)
EIX®X'®X...X'®X] if kis odd,
where @ denotes the Kronecker product, which has k terms in (38). This definition reduces to the
usual mean vector and covariance matrix when k = 1 and 2, respectively; I'(X) = p whenever

the first moment exists. For k > 3, the following recipe tells us where to find £ [I'[f’=1 X|-k"] (with

F_L ki = k)in Tx(X): if the terms in the product are strung out thus, 751‘) = E(Xi, Xi, ... Xi),
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then

[(k+1)/2) _
r=1+4 Y (igjoy = 1) pltk+A— (39)
=1
and
[k/2) ,
s=14 Y (igj—1 — 1) pl¥/8-3, (40)
j:l

where [a] is the greatest integer in a.
Using this notation, the matrices ['y(X) can be expressed in two ways. First, if the charac-
teristic function is known, repeated differentiation of it gives the following expressions for k = 2

and 3:
I2(X) = pu' - 2¢'(0)%,
[3(X) = u@p'@u-2¢'(0)[@T + X Q u+ vec(T)y], (41)

where vec(X) = (011,021, .+ .,0p1y++ -, O1py - . ., Opp)’ strings out the columns of ¥ into one long
vector.

This formulation is useful for the family (5), for the characteristic function is given by

k
bpaltin) = e 3 (,’;) T s (= nt/4)", (42)

so that —2¢'(0) = n(2k + p)/2p. A proof of this result is given in Iyengar and Tong [15]. When
the characteristic function is not available, but the moments of r are available, the representation
(for p = 0and £ = I) X = rU, implies that Tx(X) = 7*T'+(U,). Since I't(U,) can be derived
from the known properties of the normal distribution, —2¢’(0) is replaced by E(72)/p in (41).
For instance, for the multivariate t, the characteristic function is intractable, but the density of
T is proportional to

P11+ r2fu)~PH2 1 5 0, (43)

which yields the finite moments upon integration. Expressions for the fourth moment I'y that

involve ¥"(0) or E(r*) are given in [23]; even higher order moments can be computed along
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the lines outlined there. Since quadratic forms in elliptically contoured distributions arise in
standard testing procedures (see Anderson and Fang [2]), Li also provides expressions for their
moments.

In a related study, Xu and Fang [36] define an n X p matrix has a matrix elliptically contoured
density if TX has the same distribution as X for every n x n orthogonal matrix T'. The density
then has the form ¢, ,f(z'z); if Y = XE!/2 for a p x p covariance matrix £, the density of Y is
given by

cnp |27 f(E712yym1), (44)

In their paper, Xu and Fang give the expected values of zonal polynomials and other symmetric
functions of W = Y'Y. The expressions are rather involved, so we omit them.

The third method of computing moments has a longer history. In 1958, Price {27] proved
the following result. Let Np(u, E) denote a p-variate normal with mean u and covariance matrix
% = (ei;). Suppose that X = (X1,...,Xp) has a Ny(u, X) distribution (written X ~ Ny(g, X)),
and let ¢;(X1),...,9p(X,) be differentiable functions of the components of X, each admitting a

Laplace transform; then

a 14 32 P
3. F [Hgk(Xk)] =E [6:::6 _Hgk(Xk)] fori#j. (45)
1 0% 7

ij

Conversely, if this identity holds for arbitrary gy, ..., gp (with both expectations above defined)
then X has a multivariate normal distribution. Price and others used this theorem to facilitate
studies in signal processing. In particular, suppose that a zero-memory non-linear input-output
device with Gaussian input X; that yields output g;(X;). The pth-order correlation coefficient
of the outputs is a quantity of interest which requires the computation of the expectation of

? 9k(X%). The differential equation of Price’s theorem provides a useful computational tool for

such calculations. Consider the following trivial example: if h(p) = E(X1X;), where p12 = p
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is the correlation between the standardized variates X; and X3, then h'(p) = 1, and h(p) = p
follows.

Although Price’s theorem is an elegant result, it has several limitations. In fact, Pawula
[25] (see also Papoulis [24]) noted that when p = 2, and the right hand side of (45) can be
evaluated explicitly, there is a single differential equation to solve. But for larger p, there are
p(p—1)/2 differential equations to solve simultaneously. Furthermore, Price’s result only applied
to a product of functions of individual components only. Pawula used a result of Plackett [26] to
overcome these limitations. In 1954, Plackett proved the following identity while investigating
a reduction formula for multivariate normal probabilities: if the density of a N,(u, X) variate is
¢dp{z — p, L), then

0 0 .
8_a;¢p(z - M 2) = m%(r — I 2), for ¢ ;é 7 (46)

For the case i = j, we have the diffusion equation

7] 1 92
=——¢p(z — i £) = s 25 ¢p(z — 1; T). 7
30'.',' ¢P(z H 2) - 2ax?¢P(2 S ) (4‘)

Pawula used Plackett’s identity to extend Price’s theorem thus: if g(z1,...,zp) is sufficiently
smooth and vanishes rapidly near infinity, then

i} d?

aTUE{g(Xl,...,Xp)] =F B2:07;

9(X1,..., Xp)| fori#j. (48)

This extension allowed the study of more general functions, such as the “linear rectifier correla-
tor,” g(z1,22) =|z1 + 22| — |21 — 7).

Pawula then used the following method, also due to Plackett, to reduce the number of
diffcrential equations to solve from p(p — 1)/2 to one. For a given X define a line between it and

the identity matrix [, £, = (1 — t)I + tZ for 0 < t < 1. The chain rule then gives

a 9?
E%(I -1 8) = Zﬂijm‘bp(z - 1; 5y), (49)

i<j
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so that

0 0? .
EE;[Q(X),...,X;))]—E: %a;jmg(X,,...,Xp) ) (00)

where E, denotes the expectation with respect to N(u, Z;). When the right hand side of (50) can
be evaluated, a single ordin ry differential equation results. By solving it, Pawula showed how
to compute the moments of various functions of X, such as products of Hermite polynomials or
error functions. In some cases, higher order derivatives with respect to t are needed: they are
just iterates of the partial differential operator on the right of (50).

The search for bounds for certain probabilities and expectations has recently led to several
generalizations of Plackett’s identity to elliptically contoured distributions. The first is a result

of Joag-dev, et al. [18] which only requires that g in (2) be differentiable:

———f(z §,T) = ———(Za"‘xk)f(x,u,z), (51)
Z; k=1

where o'* is the i, k element of £~1. Another is due to Iyengar ([12], see also Iyengar and Tong

[15]), who proved the following identity for fp:

k' T o?
5o @i Em) = 3 Z STGD) Facg s Do) (52)

This specializes to Plackett’s identity when & = 0. Finally, Gordon [10] proved a definitive
version of Plackett’s identity for elliptically contoured densities (the proof of which he traced
back to [8,18]). He showed that the following two statements about functions g and h, each

mapping IR, into itself and vanishing at oo, are equivalent:

=3 [ onar (53)

and
92

5o 05(2) = gar—hal(e), (54
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where gx(z) =|E|~1/2 g(z'£~1z), and similarly for k. When g is an exponential cr an appropri-
ately chosen gamma density the identities of Plackett and Iyengar, (46) and (52), respectively,

follow. Next, for the p-variate t with v degrees of freedom, we have

_ Tl(p+v)/2) v —(ptv—
h = (rv)P/20(v/2) (p+v - 2)(1 oo, (55)

These extensions of Plackett’s identity have been used principally for theoretical investiga-
tions, in particular, for studying the nature of the dependence among the components of X. A
systematic study of their use for the computation of momerts of various functions (other than
the usual product moments given by I'y) has not yet been done. The mathematical basis for
Plackett’s identity goes back to the 19th century work of Schlifli [31] on hyperspherical sim-
plices, and the later work of the geometer Coxeter [6]. For more on the geometrical aspects of

Plackett’s identity and related issues, see Abrahamson {1] Iyengar [16] and Ruben [28].

5 Conclusion

In this paper, we have discussed recent developments in probability and moment calculations
for elliptically contoured distributions. These developments should allow the use of models other
than the multivariate normal for high dimensional data. Clearly, much more work needs to be
done. For instance, since Monte Carlo is an increasingly popular method for assessing the
performance of various systems, a more systematic study of appropriate sampling functions is

needed. Only the beginnings of such a study are given here.
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Legends for the two Figures

FIGURE 1: p < by /b2; A is bounded by L; and L,.

_ (1 - oM

Li:zn= OBy (z1 — (B'R™D)YV?), for z; > (V' R™1b)Y/?
2 1
_ _ a2\1/2
Lg 12y = —b(—zb(—l—p—pb—))—-(zl - (b'R—lb)llz), for 21 2 (bIR_lb)l/2
1 2

FIGURE 2: p > b;/by; A is bounded by L; and L,.

Li: zp= (p21 — b1)

) = m, for z; 2 b
‘ B (pb2 - bl)
L2 1= b2, for 22 s (T_-_—pi—)-m
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Abstract

In this paper we discuss the problem discriminating among various non-linear time
series models. While the method we propose is of a general nature we cousider a re-
stricted class of models that share an identical AR(1) equivalent correlation function
structure shence, identical spectral density. Consequently, the possibility of discriminat-
ing among them on the basis of second order moments is theoretically, and practically,
impossible. The approach being taken is aimed at discriminating among the models
on the basis of higher order moments i.e. the higher order cumulant structure. Specif-
ically. we shall focus on the 3"%order cumulant structures as our initial step beyond
the conventional covariance structure.

Key Words : Time series, Linear, Nou-linear. Gaussianity, Stationarity, Au-
toregressive, Exponential Models. PAR(1), ARE(1), EAR(1), TEAR(1), NEAR(1),

Robertson’s Fixed and Random Models. Correlation and C'umulant Structure.
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1 Introduction

Statistical methods based on moment information have been used extensively. In terms of
model 1dentification the time series literature has been devoting a considerable attention to
the problem of identifying the p and q order under the general linear framwork of ARMA(p.q)
modelling. Second order correlation information (e.g. acf and pacf) became a main tool in the
process of of selecting p and q. While second order information is of paramount importance
in the case where the roots of the AR and MA polynomials remain outside the unit circle,
higher order cumulant information becomes crucial in deciding on the locations of the zeros
or poles of possibly non-invertible, non-causal and non-Gaussian ARMA models. Of course
there are many very useful statistical tools for solving the above mentioned problems which
are not based on moments. For example, the use of information based criteria such as AIC,
MAIC and BIC in selecting orders of an ARMA model. the use of MLE in locating roots
of a mixed phase ARMA process, ect. While these non-moment based methods might be
more efficient than moments methods, the moments methods are generally simpler, easier
and intuitvely appealing both in theory and computation. It is often the case that one needs
the initial point supplied by such a method to start an efficient but complicated non-moment

based method.

The introduction of non-lincar time series models in recent years (e.g. bilinear, threshhold.
random coeflicient. ect.) amplified the importance of using higher order cumulant informa-
tion in discriminating among the varions non-linear models. It was shown that different
models are capable of producing an identical correlation function of the linear autoregressive
tvpe: thus, giving rise to a class of models characterized as 2-order equivalent. Conse-
quently. efforts have been diverted to the analvsis of the higher order cumulant structure with
the hope of exploiting differences among the models at higher order correlation dependency
structure. The basic idea underlving the search for information in the higher order cumulant

steacture i order to distinguish two models mayv be stated as follows. Within the class of
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moment determination. moment sequences of two different stochastic processes cannot be
identical. Specifically, given two stationary series {X,} # {Y;} there exists (uy, ua,. .., ug)
such that A”-order moments or cumulants with lags (u), ua,...,ux) of {X,;} and {Y;} are
not equal. i.e.
Crluy ug, oo ug) # Cyluy,ug, .o, ug).

In practice, one hopes that the above is true for a small order k, and the difference is large
relative to a given sample size. Otherwise, the search for a diseriminatory power in the higer
order cumulant structure might turn out to be fruitless.

The problem of discrimination among non-lincar time series models has been considered by

many authors. Lawrence and Lewis [24] considered special 37-order structure of the form

Cor(RP X2« Con([RPP X 4k)

(r)
t

where R;” are the linear autoregressive residuals of order p for RCA and PAR models .

Within the class of bilinear models Li [26] and Gabr [10] considered quantities of the form

Cor(X? X2 ,)

t+k

Cor(NE Xigr)
respectively. Auestad and Tjestheim [1] considered the use of non-parametric methods aimed
at the conditional mean and variance of various non-lincar time series models. Anderson [1]
approached this problem differently by observing differences in the sample paths generated
by the exponential family. Using a fluctuating type statistic he was able to discriminate
among simulated traces for a reasonable number of observations. In his work the moments
do not play a role in the proposed discrimimation procedure and as such may provide an
alternative in situations where moments up to the desired order do not exist. Tsay [37]
offers a very general method for selecting a model depending on the type of characteristic

oune is interested to investigate.

We propose a new approach which relies on the conjecture that the information required for

diserimination among the models i< available in the higher order moments or equivalently,
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in the higher order cumulant structure. Specifically. we shall concentrate our attention on

the third order cumulant structure given by

Clrys) = E[(X, = m)(Neoe = )Xoy — )] (1.1)

The family of exponential time series models will be the framework within which we shall
show the parametric equality of the correlation (hence, the spectral density) functions, and
the way in which the theoretical higher order cumulant structure points out to the differences
among the models. We demonstrate the method for a restricted case where we consider a
family of non-lincar time series models with known marginal distributions and a common
AR(1) equivalent correlation structure. This family consists of marginal exponentially dis-

tributed time series models which include :

(1) Product Autoregressive Model [ PAR(1) ]

e (i1) Exponential Autoregressive Model [ EAR(1) ]

o (iii) Transposed Exponential Autoregressive Model [ TEAR(1) ]
e (iv) Newer Exponential Autoregressive Model [ NEAR(1) |

e (v) Robertson’s Fixed Model

(vi) Robertson’s Random Model

In addition we shall consider the hinear antoregressive model with exponential innovation
process which we shall call ARE(1). As opposed to the familv mentioned above the ARE(1)
does not have a known marginal distribution :however, its moments can be computed. This
model. though, shares the same correlation structure as the non-linear exponential family.

The underlving objective is to discriminate among realizations produced by the models

we consider. This task is impossible to accomplish since they have identical second order
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structure, We should note that the models being, considered by no means exhaust all snch

second order equivalent ones.

The plan for the paper is as follows. we shall start with a brief review of the traditional
approach to time series analyvsis . followed by a presentation of the family ol exponential
time series models in section 3. o that section we shall state the form taken np by ecach
model, show the type of sample traces they are capable of producing and develop their
correlation functions. Then we give a brief review of higher order cumulants in section 1
Subsequently, the results we obtained for the 37-order cumulant structure for the seven
models under considerations are presented in section 5. General methodology is presented i
section 6. Phe results of the simulation part are the topic of section 7. There we also briefly
disenss the way in which the sample traces, correlation functions and 3"-order cumualants

were eenerated empirically. A briel conelusion is given i section 8.

2 Stationarity, Linearity and Gaussianity

Over the fast 30 vears statisticians have developed a large body of theory and methods aimed
at the analvais of time series data. A comprehensive account of their work culminated in

books such as Kendall and Stuart {17]. Jenkins and Watts [15], Box and Jenkins [3], Hannan

(2], Anderson (2], Brillinger [7]. Chatficld [9). Koopmans (18], Priestiey [30], Rosenblatt
[32]. and Brockwell and Davis [S]0 to name a few. The foundations of classical time series

analvsis, as deseribed in the above references, were thought to be based on two underlyving

assumptions, stating that

L. The time sertes is stationary to an order of at least two. The process is assumed to
remain in cquilibrium about a constant mean level with the proportion of ordinates not
exceeding any given level is abont egual over any time interval spanned by the sample,

In case the observed series does not exhibit such behavior. it 1s further assumed that
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weak stationarity can be achieved by applying an appropriate transformation e.g. linear

filtering.

2. The time series, viewed as a stochastic process, {X,.l € T}, is an output from a
Linear filter whose iput is the white noise process {Z,}: hence, the observed sample
realization can be represented as a linear function of past and present values of {Z,} -

a one sided representation.

[n recent vears the validity of these twin assumptions - as reasonable approximations to
sample trace realizations - has been questioned as data from a wider variety of sources
became available. Coupled with advances in the field of non-lincar dynamics (deterministic
chaos theories), research in the field of non-stationaryv, non-linear and non-Gaussian time
series methodology have been in progress. Subsequent efforts to bring non-linear time series
literature under one unified framework resulted in the publication of books like Priestley
[29] and Tong {36]. The reader is also referred to Mohler [28] for a collection of papers on
theory, computational methods and applications in the area of non-linear signal processing.
Tong [36] discusses properties of the Gaussian stationary lincar model (GSLM) which may

possibly be violated :

e (a) Time series that exhibit strong asymmetric behavior cannot be expected to confirm
to the GSLM. Such models are characterized by symmetric joint cumulative density

functions and that rules out asyvminetric sample realizations.

e (b) The GSLM does not give rise to clusters of outliers e.g. sudden bursts of large
magnitudes at irregular time intervals. Observed time series in socio-economic related

phenomena do tend to exhibit groups of outliers.

o (c)Sample traces that demonstrate strong cveles cannot be modeled by the GSLM since
the regression functions at lag (k) i.e. E[X,]X,_4] are all linear due to the assumed

joint normality.
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o (d) The Gaussian process { X, } is reversible i.e. (X, ....., X}, )" has the same distribution
as (Xy,,...... X1)'. Reversibility is violated in the presence of differences in the rate at
which a sample path rises to its maxima, and the rate at which it falls away from it.
One simple way for investigating departures from reversibility is to plot the sample on
a transparency and then turn it over. If the mirror image is similar to the original plot

then the series may be assumed reversible - irreversible otherwise.

Oune could also test formally for Gaussianity and linearity. Following Brillinger [6], who
pointed out to the potential of using the bispectral density function as the basis for classifying
a process as lincar (and possibly Gaussian) or non-linear, Subba Rao and Gabr [35] and
Hinnich [13] developed formal tests for lincarity and Gaussianity. The tests are based on
the constaney of the normalized bispectral density function under the assumption that {X,}
have a linear representation. Tong [36]) orovides a comprehensive review of tests for linearity
and normality. Priestley [29] considers the case where a stationary process does not fit into a
lincar representation and concludes that "a fortior: many types of non-stationary processes
wonld also fall outside the domain of linear models.™ In swimmary, observed time series do
not necessarily conform to models such as the GSLM. The degree to which a time series
realization represents a trace generated by the GSLM. has a direct bearing on the usefulness
of estimating an ARMA(p.q) model. For purposes of prediction, forecasting and control one
is better off taking advantage of the non-linear (hence, non-Gaussian) structure of the data
during the modeling stage. If indeed the GSLM is deemed inappropriate, one has the choice
among several families of non-linear models. We shall turn to some of these explicitly in

scection 3.
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3 AR(1) Type Exponential Models (EAR)

The family of models we consider here is that of the ceponential autoregressive models, which
is composed of the EAR(1) and its generalization to the transposed crponential autorcgressioe
model TEAR(L), and the newer exponential autoregrssive NEAR(1) model. This type of time
series models were proposed by Gaver and Lewis [L1], Lawrance and Lewis [20, 21], Jacobs
and Lewis [11]. Lawrance [19] and further developed by Lawrance and Lewis [22, 23, 24]. Also
we consider Robertson’s Fixed and Random models [31], and the Product Autoregressive
PAR(1) model proposed by Mcekenzie [27] - where all models being restricted to a first order
autoregressive structure.

In contrast with other non-linear time series models (c.g. bilinear and threshold), this class
of models is an attempt to capture the behavior of, possibly observed, time series processes
with explicit marginal exponential distributions. The family of EAR models is advocated
as a wayv of relaxing the assumption of marginal Gaussianity which underlies the Gaussian
lincar stationary model. 'The reasons behind the choice of the exponential distribution as
the marginal aistribution are given in Gaver-Lewis {11} and Lawrance and Lewis [23]. The
standard linear first order autoregressive process, Ait{1), with exponential input, ARE(1),
will be used for comparison purposes n section 5. This model has an identical correlation
and spectral denstty functions as do the models mentioned above :however, its marginal
distribution is not known, thus. it is not to be considered as an exponential model but
rather as a linear AR(1) model with exponential input. The fact that it is linear enables us
to distinguizh it from any other non- linear model, with or without an identical correlation
strncture. based on the theoretical resuit stating that a process with a linear representation
ha . a flat (constant) normalized bispectral density. for more details see Subba Rao and Gabr

{I{-’)} .
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3.1 PAR(1) Model

A natural extension of the linear AR(1) model was proposed by Melenzie [27] and consists
of an exponentiation of the lincar model such that the additive form is being translormed
mto a multiplicative form. Here we consider a sepeial case of the gamma family of marginally
distributed time series where the output series has an exponetial marginal distribution of
unit mean. Specifically,

X, =X (3.1)

where a € (001) and V; is given by a mixture of unifori (0, ) and exponential mean one
random variables independent of eacli other.

This model differs from the others we consider in two aspects. First, the innovation process
does not posess a known parametric density function and its higher order cumulant structure
is expressed in terms of the moments ol X, only. Second, we note that (3.1) may be lincarized
by taking the log: of both sides of the equation. As such it is classified as an infrinsically
linear model i.e. o non-lincar model which can be lincarized. 1t differs from the following
models which cannoi e Tnearized due to their switching nature and are 1o be considered
under the class of rntrinsically nou-linear models i.e. a non-linear model which can not he

lincarized.

3.2 EAR(1) Model

[n the following set up we let {£,} be a sequence of i.1.d exponential (X) random variables

with a probability density function given by

Ae ™Y >0, A>0
0 otherwise .

frle)

I
e
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We define an EAR(1) model as,

Xy = pXiar+ o (3.3)
_ [LYg_l Wlth pfOb. P (3 4)
o pXt—l + Et with pI'Ob. (l - p) ’
= ng_l + IgEt (35)

with (0 < p < 1) and {I;} being an i.i.d sequence defined by

0 with prob. p )
fe= { 1 with prob. 1 —p. (3.6)
Under this formulation {X,} is marginally distributed as an exponential random variable

with parameter A,

Gaver and Lewis [11] point out to several characteristics of the EAR(1) model:

e Setting p = 0 yields the special case where {X,} is a sequence of i.i.d exponential

random variables.

e =, is not a continuous random variable. This {eature distinguishes (3.5) from the usual

linear AR(1) equation with Gaussian or exponential input.

e The representation (3.5) is one of & random linear combination of an i.i.d exponential

sequences; thus, can be ecasily simulated on a computer.

One problem the EAR(1) model has is called "zero defect’ (see Lawrance and Lewis [22]) and
relates to the sample paths it generates. Specifically, the model generates paths in which
large values are followed by runs of decreasing values, with the runs having geometrically
distributed lengths. The large values arise when £ is included (i.e [, = 1) while the falling

values stem from the deterministic part of (3.5) (i.e I, = 0).
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3.3 TEAR(1) Model

A natural extension of the EAR(1) model is to interchange the role of X, | and IZ, in (3.5).
This does net affect the exponential (A) marginal distribution of X,. Upon replacing p by

I — a we obtain the transposed erponential autoregressive TEAR(1) model

.\,g == [l‘\,t—l -+ (l - (Y)Et (37)
X1+ (1 =)k, with prob. « (3.8)
(I —a)k, with prob. 1 —a o

where

(3.9)

0 with prob. | —
1[ = .
I with prob. a.

Note that in this case the innovation process is a continuous random variable scaled by
a constant 1 — a. The behavior of a simulated path, for a large o, shows geometrically
distributed runs of rising values (i.e. I, = 1) followed by sharp declines when the selection
I, = 0 is made. The decline due to the exclusion of the previous value X,_;.

The TEAR(1) model is discussed by Lawrance and Lewis [22] as an extension of the EAR(1)
model. However, TEAR(1) is also a special case of Arnold’s [3] exponential model driven by

past innovations. Specifically, define the random variables
Ny=1 ifandonlyif U, =1

Ny=1 fandonlyif U;=0,U0,,=0...U_;4; =1

where (7, are i.i.d Bernoulli(p) random variables with N, being distributed identically but
not independently as Geometric(a) random variables with domain 1,2,3,.. ..

The model. expressed in terms of past innovations, is given by

Nt
Xi=a) s (3.10)
=1

where 7, ~ iid Exp(A) and the sum is multiplied by « to obtain strict stationarity. This

representation is obtained if one express the TEAR(1) model (3.8) recurssively.
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3.4 NEAR(1) Model

The previous two models, EAR(1) and TIAR(1), ave spectal cases of a more flexible model
in which {X,_;} in (3.8) is scaled by a coefficient /#; thus, siinulated realizations generated
by such model are of interest as it may circumvent the problem of geometrically distributed
runs of falling or increasing values which might not be applicable. Specifically, let {X,}
denote the time series variables and {£,} be a sequence of an i.i.d unit mean exponential

random variables acting as the innovation process. The NEAR(1) model is defined as

s 3Xi-y with prob. «a '
.\t - El + { U \Vith plvob. 1 —-a (,;ll)
= /ﬂ,.\’,_l +St (312)

where
_J E,  with prob. p -
T { bl, with prob. 1 —p (3.13)
0 with prob. | —a

le= { 1 with prob. a (3.14)

1-9

e The parameters a and 8 are allowed to take values

with b = (1 —o)3 and p =
over the domain defined by 0 < .8 < | with a.3 # 1. Setting (a =1 , 0< 3 < 1)in
(3.12) vields the EAR(1) model, where fixing (.3 = 1,0 < a < 1) give rise to the TEAR(1)
model. Both are extreme cases of a NEAR(1) process. We note that due to the distribu-
tional assumption underlying {£,}, the innovation process is not allowed to take on negative
values ie. PIE, < 0] = 0. It is obvious how the concept of “switching™ comes into play in

(3.12). The switch from one linear piece to the other is controlled by an external random

mechanism with a prespecified parametric probabilistic structure.
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3.5 Robertson’s Fixed and Random models

Robertson [31] suggested two exponential models which we shall refer to as Robertson’s fixed
and random models. Our main concern is to show that these models cannot be identified
via the correlation or spectral density functions ;hence, one has to explore the higher order

cumulant structure.

3.5.1 The Fixed Model

Consider the following switching structure

| Xi_y —nB with prob. 3
Xe = { E, with prob. 1 — 3 (3.15)
where .3 is a fixed constant, F, has a truncated exponential distribution given by
e 0<e< ~Ing
. — 1-73 :
Jele) { 0 otherwise (3.16)

with the marginal distribution of X, being exponential with unit mean. Alternatively, (3.15)

may be represented using an indicator random variable i.e.
‘\,l = It(.\'t_l - ln/3) + (l - It)Eg (317]

where

j, = { 1 with prob. 3 (3.18)

0 with prob. 1 — 3.
3.5.2 The Random model

Oune may generalize the fixed model by allowing 3 to become a random variable which acts

as a mixing distribution, with domain restricted to the interval [0.1]. Specifically, let X, have
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the representation

) Xy = Ing3, with prob. 3, .
A, = ' . 3.19
v { E, with prob. i -- 3, (3.19)
or stated in terms of an indicator random variable
.\’p = It(‘\'t-—l — lll}it) + (l — 1,)[';{ (320)
where
1 with prob. g,
= ' . -2
L { 0 with prob. 1 — g,. (3.21)

The probability density assigned to 3; is a beta density with parameters («,2)

_ Jor—1 .
Fu(d) :{ ala + 1)1 — )3 0<id<l,a>0 (3.22)

0 otherwise.

The distribution of In3; is obtained using the standard transformation of variables technique.

Let Y = [nJ3, then

_Joate+ DI =eY)e —oo<y <0, a>0 a2 o
h(y) = { 0 otherwise. (3.23)
The probability density function for £, is appropriately modified
1 —€ .
. ——¢ 0<e< =Ing
. — 1= t 3 2
JEl9) { 0 otherwise. (3.24)

Within this framework one notices that the random variables I, and E, are not independent
as they both mvolve the nuxing distribution 3;. The marginal distribution of X,. though,
remains exponential with unmt mean by construction. We remark that all these models are

stationary i the wide sense i.e. strictly stationary.

3.6 Summary

We recall that the models nnder investigation are the following :
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ARE(1) :

.\./ l/).\'/ | }'I'/y[

PAR(1) :

EAR(1) :
Y, - pX, - with prob. p
U7 pXy 4+ L with prob. 1 —p

TEAR(1) : (p=1—«)

(1 —a)l, with prob. | — «

. { Xi_1 4+ (1 —a)k, with prob. «
.\[ —

NEAR(1) :
i BX,_1 +¢, with prob. «
.\1 = .
& with prob. | — «
where.
E, with prob. p

T { bE, with prob. | —p

p=— b=(1 —a)p

Y, Xi-1 = Ind with prob. 3
CETY K, with prob. 1 —

where
L << —Ins
0 otherwise

Roberston’s Random Model :

v - XiZy — In3, with prob. 3,
ST K, with prob. 1 — 3,

where

fr(c) = ;j",,-‘(" 0< < —Iny
TEVTT otherwise

0 otherwise.

fia(3) = { ola+ (1= 0<F<l, a>0
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Table 1 Correlation Functions

ARE(L) | PAR(D) | EAR(L) | TEAR(1) | NEAR(1) | Robertson’s Fixed | Robertson’s Random

oa “.s p.s ()r“ ((}/i)s ")m (ﬁ)s

For all models, but Robertson’s and PAR(1), the input process { £} is assumed to be an
LLd exponential sequence of unit mean and, with the exception of ARE(1)., the output { X}
has a marginal exponential distribution with mean one. The correlation functions for the

various models are given in table 1.

Figures 1-3 contain simulated traces produced by the various models. Note that we indexed
the parameter values of cach model such that the correlation functions produce identical

results e p(s) = (0.1)%, (0.5)%.(0.75)°.

4 Higher Order Cumulants

Let { X} be a real valued strictly stationary random process and let m(y.4,, ..., 1) be the

k" -order product moment i.c.

Ill(fl.f-z.. . .,lk) = [L'[‘\"“.\'—tg .. '\,tk]' (41)

For a stationary process of order &, we can write (4.1) as

Hl(/|.lg ..... //\-)'—"H?(U.[2—[l.tR—l]‘...,tk—f,l). (42)

Now let the characteristic function (of) of {X;} be defined by

ON(CreCon v v o Gr) = E[er@ X+ NG+ Had ) (4.3)
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then the Taylor series expansion of (4.3) about the origin is given by

k (¢, g
ox(¢) = /{Z’__(SL%_“J_)(_\’“XQ...Xt})+()(|§|’°)}dF (4.4)
J=1 ’
k I (
= ;' “‘2 )F{X,,Xh...th]+O(|£I") (4.5)
ki
_ \;1’ "‘2 )nz(tl,tz....,tk)+0(|S’]") (4.6)

1
where | ¢ |= {Zle Cf}z and F'= Fx, x,..x, (& Tty .., Ty,) being the joint cumulative

distribution function .

The logarithm of the ¢f (4.3) is defined as the cumulant generating function (cgf)

Kx(Cri G Gh) = log{ E[e @ XutGXot+GXy )]y (4.7)

such that C'(¢y, t. ... . t). the k**-order joint cumulant of the set of random variables
(X Ay Xy, }. is the coeflicient of ((i,(2,...,Ck) in the Taylor series expansion of (4.7)

about the origin. Specifically

k J 4 .' PRI
Mc](tl,tz,...,tj)+()(|g|k) (4.8)

where € (f b oo 1,) = Comulant(X,,,X,...., X;)) . We note that the cumulant of order
greater than two are all zero for a Gaussian process. This feature is used extensively in signal

processing to suppress Gaussian noise.

The relationship between moments and cumulants were formalized by Leonov and Shiryaev

[25] and are given by
mity.. ... te) = B[N, Xy, X ] = Z( (11)C(1g) ... C(1) (4.9)

where the siim is taken over all partitions (... .. v,) which is a partition of (¢..... ti).

Relationship (1.9) implies that we can write the moments in terms of the cumulants and 1f
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we invert (4.9) then oue can write the cumulants in terms ol the corresponding moments;

hence, the inversion of (1.9) yields

C(Xys Xppe oo X ) = S(-1 " p = DIECTT X)) B 1T X)) (4.10)

JEYV J€Evp
and if the process is k*"-order stationary then we may write

(','([,,Ir_),...,ik) = (‘(0.{2—“,...,[/;-[1)

—_— v
= C{T,Tov. o Tho1)-

rom (1.10) it is seen that the cumulant C(7, 7y, ..., Tk_1) 18 @ kt-order polynomial in the
moments of no higher than & and conversely, the kth-order moment m(ty, by, ... tk) Is a

k" order polynomial in cumulants of order no higher than k. Consider the specific cases :

C0) = E[X] =
Cys) = pls) =
Ca(s1.82) = plsr.s2)
— {ps0) + p(s2) + pls2 —51)}/1,,+‘2/13
Cy(s1.93.83) = plsy.89,83)
— e {plsy = s1us3 — 1) F i s2.83) + plsies2) + pls1, 83))
+ 2/’“/!(”‘1) + p(s2) + pes3) + plse — s1) + p(s3 — s1) + pls3 ~ $2)}

— (s (sy — 82) = pl(s2) (83 — sp) = plsz)pu(sy ~— s1) — 6!‘:

where

u(s) = E[X Ny
‘U(.\':. .‘32) = h’{‘\rf‘\,f-fs] “‘t-}-sg}

/1(-"1--*‘2--“":1) = I;[-\.I-X’H—sl"-t+sz‘¥t+s‘z]

184




Consequently, one may write (5(:s;.5,) in the lorm

(7(".5) = L"[(‘x—t - /‘r)(«"H»r - llr)(‘\,l+s - /l.‘r)] (41 1)

== E(.Y[ X't+r-\'t+s) - /L,[[’](,\’t -X'H»r) + Iv'(Xt_’{',H) + E(X¢+7~‘Xt+s)] + 2[12

and C'4(5). 89, $3) may be expressed as

Clroson) = E[XN X Xowo Xega) (4.12)
— (BN X e Xeguor] + EIXo X s Xoga) + E[X X X ias] + E[Xo X0 Xig))
+ 203 (E[X X + E[X X ] + ELX X 4]
+ E[X i Xigoor] + B[N Xipur] + EIX Xipues))

- [’:[~\-f4\;l+r]E‘[‘\,t-\’H—u-—s] - E[.\’,XHS]E[X,.\’Hu_T] e E[‘Yt‘Xrt+u]E[‘Xt‘\/-t+s_T] - 6}12.

For a detailed account of the relations between moments and cumulants the reader is advised
to consult Kendall, Stuart and Ord [16]. Cumulants and their relationship to spectral analysis
are discussed by Sesay [34] and Rosenblatt [33]. Sesay [34] discusses the various uses of

cumulants and cumulants spectra, specifically

e Cumulant spectra is used in tests aimed at discriminating between linear and non-linear

non-Gaussian processes (see Subba Rao and Gabr [35]).

e The asymptotic.distributions in some non-linear theory may be obtained using cumu-

lants.

e Time reversibility may be determined by verifying C(—=sy.. ... —8k-1) = C(S1,. -0 5k1)

or equivalently the imaginary part of the k*-order spectrum is equal to zero.

e Cross-cumulants, and cross-cumulant spectra, can be used in the estimation of the
parameters of a non-linear difference equation through the use of transfer functions

that arise in the Volterra expansion (see Priestley [30]).
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5 The 3“-Order Cumulant Structure

In the following we shall present the 37-order cumulant structure for cach of the models
discussed in section 3. For each of the models a closed formn solution to the 37 -order cumulant
structure is given. These solutions are based on closed form expressions obtained for the
expectation terms which define the 3™-order cumulant structure, For all - but ARE(1) model

- the output process is marginally distributed as an exponential process with unit mean. The

results presented in this section are based on the marginal moments given by

Hy = I Hr2 = 2 Hr3 = 6

The tiput process is taken as an i.i.d exponential process with unit mean; hence, with identi-
cal moments as stated above. Robertson’s and PAR(1) models form a separate class, in this
respect, since the innovation process is defined by a sequence of i.i.d truncated exponential
random variables and a mixture of exponetial and uniform random variables, respectively.
The introduction of a mixing distribution in Robertson’s random model further complicates
the structure of the innovation process. Tables 2,3 and 1 list the 3™-order cumulant structure

for these models. We recall that the models under investigation are given by (3.25)-(3.31).

The following expressions are used in tabels 2. 3,4.5 and 6

]
ey = ——
/ | — o
2
lf, =
fre = (T o)1 - o)
6
f,3 = XY 3 )
(I = o™l —o?)(]1 - 0)
| — o7
Wr) = ——
| — 0
() = =7
Sl T =
B 1 — o
() l__‘(:)zr
Her) = |l —o
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b

I

d

A7)

['j[[’[.f][]
Elin3) 1)
l',‘[l',‘( II]

FIE T

EINT =Pl +a), a €(0.1)
p+ (Lt =pb

2p + (1 - p)b]

I — .47
-4

I — (eni3)"
Ll
I — A7

I —A
a.3°

: ! e
13 [/Il.i,ll] — t;; + l',[['z([t]

s 17 = Elln s 1)

9
El(e3) 1A + m ~ E[EAL]
EIX N ) = oppen — ap,
1 -0
-0
O
a2
i 317 = oo + l){ : - —~ ! - }
(a+2)2 (a+1)
. 242 2 2
Eln )07 = o(a + ]){(” T iag 2)3}
) | |
EIE ] = ot + l){n F1 a+2 (a4 2)2}
FIETL) = 20(a + l){«L_. !
' ’ o 4+ o+ 2

| I
S (a+2)?  (a +2)”}

Given the information summarized in these tables one may standardize the rate of decay

of the correlation function such that the correlation functions are identical for these models

for a given parameter value. Our goal is to investigate how would the 3"-order cumulant

structnre hehave subject to a standardized correlation function. It is our conjecture that

one might be able to diserinunate among signal paths produced by the various models on

the basis of higher order moments. It i< obvious that the correfation functions can not he
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Table 2: 37-Order Cumulant Structure : The Lincar Modcl

ARE(1)

He3 — 3#1:,2/‘3 + 2“2-

O [1r s — 2pz202]
+[(7) = stz — 262

+2p:[72(T) — poy(7))]

*/51,2/11'[1 + ZQST] + 2“3

¢2Tﬂf,3 + 2#1‘,2[7(27-) - ‘7(7-)]

+2p: 8715 { (1) = 977 19(7)}]

C(l.147)

+2;L2

¢ s FHbpen + 207 + (7))
—piepea{d” + 6+ ) +u{y(T) + (7 + 1) + 1}]

Clhyh+7) | o772,y

)

+2¢" (2 {7(2h) — v(h)} +ra{r2(h) + 1Z5{12(h) — 6" '(R)}}]
1220 ¥(T) +py(R)Y(T
—pte[pzo{d” + 7 + 0"} Fu () + (7 + R) + ()} + 243

Table 3: 3"%-Order Cumulant Structure :

The Intrinsically Linear Model

PAR(1)

C(0.0) >

! T

¢(0,7) o W ar 12 = 2tz ar 4]

("(T. T) 2z 2nT 41 _ 21‘x.n'+1

i ’ Hr2a7 Mz aT
HrofaT+1)41HzaT+1 Mz af 4] By attiqg bz a4l

(1 T — X 9

( bl I- + ) Uf-rx"l‘z‘a(a"-f-l) Uz.aT uz.ar+] + 1. a +

H hiaT bz aT 41 u +h 1w h

C(h,h + 7—) ral(aT4n)41Mza __ Jpzemth + saTthgl PRI G

u‘-"""‘;,a"(a"-{»l} Bz aT u’.r,rx"'f‘" uz,oh

used as a tool for discrimination purposes and consequently nor can the spectral densities.

To illustrate the shape of the 3"%-order cumulant structure, see figure 4, we set

o.p.a 303, =5 = 0.5, First, we observe that certain ratios in tables 2,3,4 and 5 yicld a

clear characterization of the cumulant surfaces. Consider the ratios, presented in table 6, for

the models with a simple close form i.e. EAR(1), TEAR(1) and Robertson’s fixed model.

While such simple expressions are not available for the remaining models it is possible to

investigate the behavior of these ratios numerically. Two of the above ratios turn out to be
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Table 4: 3"-Order Cumulant Structure : The Intrinsically Non-lincar Models

EAR(1) | TEAR(1) NEAR(1)
C(0.0) 2 2 2
C(0.71) 2p7 2a 2(a3)"
C(r.7) 2p%7 2a {l + 7(1 — a}] 6A7

+4(af) [pys(r) = 1]
+2pcpead =5 { (1)
—(aB)" " y5(T)} = Yas(T)]
+ite27A(T)

C(l,147) [ 2p7° 20™(2 - a) 2(aB) 33 + 21 ]
+(aﬂ)T#(.2

+Yap (T tte[te + 2083]
~[2{(aB3)(1 + aB) + a3}
+/1({'7a;3(

Fop(T + 1) +1}+2
Clh.h+71) | 2p7F2 20" + h(1 — )] | 6(aB)" A?

+4(aB) P peys(h)
+2(aB) pteyas(T)
+2(aB)* pl = {7 (k)

—(ap* " ys(h)}

+(a8) e\ (R)

+“ ‘YQB(h)‘)nJ( )
—2{(aB)"(1 + (aB)*) +(ap)"}

+ﬂ({7aﬁ +7aﬁ( +h)

+7m?(h)}] +2

more informative for the purpose of discriminating among the models : %%-;— and %l(:—t)fl
In the simulation context, however, since the cumulant surfaces decay rapidly towards 0. the
computation of these ratios become difficult as we attempt to divide by very small values .
These numerical considerations unstabilize the use of the ratios as a tool for discriminating
among the models. The computed ratios ( as functions of the lag 7 ), indexed by a set
of parameter values such that the correlation function of each model exhibits an identical
behavior (e.g. p(s) = (0.3)%) are also given, figures 5-6. so to demonstrate the shapes of the
expressions given in the first and fourth rows of table 6.

Given the plots of the ratios and the cumulant surfaces for the six models we may classifv

them into three categories. EAR(1) forms its own class. Robertson’s models and TEAR(1)
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Table 5: 3"-Order Cumulant Structure @ 'The intrinsically Non-lincar Models (cont.)

Robertson’s Fixed Model | Robertson’s Random Model

C(0.0) 2 2

¢o.n) 237 207

C(r.7) 287(1 — rinid) 2071 = 27h.07"]
+(n + 2ab[y(r — 1) = (1~ 1)p" 7]
[')u +(']

(Ll +7) 237 — Ing) ln’“

—o"[2 (’b + 1) — ¢
+aly (1) +A(r + 1) + 1]
~u(l7(r) ~2(y - 1)

7‘(/1. h+ 1) 237 = hind) Qo7h

—20" M= 20b, +

~20"ary (T = 1) + 1]

+o (e + 2)ab, {y(h — 1) = (h = 1)p" "} =2
+y(M)fa*y(T) + o)

+a[y (1) + (T +h) + (k)] +2

form a separate group. NEAR(1) and PAR(1) form an additional class. Note that the
cumulant surface produced by NEAR(1) is a combination of EAR(1) and TISAR(1) and that
it looks very much like the surface produced by PAR(1). However, the two models seem
to differ in their behavior when one observe the plots of the theoretical ratios. Closer look
at the vertical axis for NEAR(1) and PAR(1) in figures 5 and 6 shows that the ranges are

similar and much smaller than the ranges of the vertical axis for the other models.

6 Methodology

In the following we propose a discrimination procedure that may be applied to the models

under investigation (3.25)-(3.31) or to any set of competing models.

|.et

M= { a finite set of finit parameter models }.
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Table 6: Ratios of the 37-Order Cumulant Structure

EAR(1) TEAR(1) Robertson’s Fixed Model
%6:—3 p’ 1+ (1 —a)r 1 —7inp
) p? a2 — a) A(1 — nf)
) Pt | oL+ AL - )] BE(1 — hing)
C{1,1+7) 2—7 a(2-a) B(1=Inp)
C(r.7) P I+7(l-a) 1-7ing
C(hh+71) 2h—7 af[I+h(1~a)] B (1-hing)
Clr.r) p 1+7(1-a) 1—7inf
C(hhtT) 2(h-1) o T1+h(1-0) B2~ T(1-hinB)
iz | P 2o 1-inf

Our objective is to identify the most compatible model m € M with {X,},. Specifically,

given {X,}i=,, find a model m € M such that m ~ {X,}],.

Procedure :

. Compute (A7I(u1,...,uk) .k =0,1,2,..., u; € I integer. We call it the empirical

k**-order cumulant structure based on the data {X,}™,.
2. Forcachm e M

(a) Estimate , using {X,}},, the parameter 8,, (possibly a vector) for model m.

(b) Compute Cy,_ (uy,...,ux) for model m empirically or using the theoretical cumu-
lant structure. We shall call it Method 1 if the computation of the cumulant
structure is done using the known theoretical cumulant structure. We shall call

it Method 2 if the computation of the cumulant structure is done empirically

hased on {X;}}_,.
3. Given the above quantities we seek to minimize, for a norm || ||
Minmeam || Co(uy, ... ug) — Co (2ey, - ug) || - (6.1)

Alternatively,

Minmers || fr(\y. ... M) = for (Aree.ns ) i (6.2)




where fy, (Ar,...,Ax) is the kt*-order spectrum (i.e. polyspectrum). The general
distance measure may be specified as ¢.g.

lgll= 3 lgl*.

{u,}€S

There are several issues that need to be considered under the proposed procedure. First,
various properties of the model such as stationarity, ergodicity, moment conditions, moment
calculations, parameter estimation and simulation aspects of sample traces must be investi-
gated. Second. statistical properties of the formal test statistics based on (6.1) or (6.2) have
to be studied. In order to do so the sampling properties of the proposed procedure must be
investigated. In the following section we consider the simulation aspects of (6.1) and present

some simulation results for both methods 1 and 2.

7 Simulation Results

In order to verify the possibility of discrimating among the various models on the basis of
their respective 3"-order cumulant surfaces, it is necessary to obtain reasonable agreements
among the theoretical and simulated cumulants. In the following we discuss issues related
to the simulation aspects of the sample traces, correlation functions, 3"%-order cumulant

surfaces and ratios.

7.1 Simulating Sample Traces

The simulation aspects of the NEAR(1) model and its special cuses, EAR(1) and TEAR(1).
were considered by Lawrance and Lewis [20]. The algorithin they give is being used in our
simulation to generate sample realizations for the NEAR(1) family. The subcases, EAR(1)
and TEAR(1), are simulated by setting (a =099 , 0 <3< 1)and (§=099,0<a< 1)

respectively, in the same program that generates the simulated paths for NEAR(1) model.
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We follow Lawrance and Lewis in setting the degenerate parameters to 0.99 so to avoid

complications 1n the simulation of the traces.

Robertson’s fixed and random mwodels are generated by two different programs. One which
allows a selection of a branch with a fixed probability and one which allows the selection
of a branch with a random probability generated according to a beta random variable with
parameters (a,2). The input signal is a truncated exponential; hence, needs to be simu-
lated accordingly. Since no IMSL subroutine is available we generate a realization from a
truncated exponential random variable using the cumulative distribution function technique.
Realizations from the AR(1) model are easily simulated and no further explanations are re-
quired. McKenzie [27] discusses the simulation of PAR(1) models. The innovation process

Vi is generated according to

V= E'-b(U)

where U is distributed as a uniform (0, 7) sequence of random variables which is independent

of E - a sequence of exponential mean one random variables. The function b is defined by
b(¢) = sing(sinad)™(sin(l - a)(ﬁ)—(l—a).

Thus, {V;} is generated as a mixture of uniform and exponential sequences of independent

random variables.

All the simulated paths are generated by FORTRAN programs that call IMSL subroutines

which are used to simulate continous uniform, beta and exponential realizations.

7.2 Simulating Higher Order Moments

One FORTRAN program is employed in simulating the correlation functions, 3"*-order cu-
mulant surfaces and certain slices of these surfaces . Smoothing considerations lead us to

simulate each model 30 times where the length of each simulated trace is 1010 data points.
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Table 7: Distance Measure (6.1) - p(s) = (0.25)*

PAR(1) | EAR(1) | TEAR(1) [ NEAR(1) [ Robertson’s Fixed Robertson’s Random
PAR(1) 0.26 0.21 0.17 0.06 0.58 0.40
EAR(1) 0.018 0.015 0.68 0.08 1.40 1.14
TEAR(1) 0.78 0.70 0.018 0.37 0.08 0.03
NEAR(1) 0.12 0.09 0.31 0.008 0.84 0.63
Robertson's Fixed 1.80 1.65 0.22 1.06 0.02 0.07
Robertson’s Random 0.73 0.66 0.02 0.34 0.12 0.05

The program computes two expectation terms : E[X,X,,,], over the range of lags 0 to 9, and
E[X; X4, Xt4r+s], over the range of lags, -9 to -9. Then the smoothed empirical correlation
function and the smoothed 3"¢-order cumulant surface are computed using their definitions.

In the computations of the expectation terms we use :

i 1001
E[‘Yt‘Yl-{-T] = m ; XtXH-r
i H 1001
E[Xt-xt+r)(t+r+s] - T Z tXtXt+rXt+r+s
1010 =

In order to determine how accuratly the simulated cumulant surfaces match their theoretical
couterparts we plot the empirical correlation functions, the empirical C(r,7) slice and the
complete simulated surfaces in figures 7-9. This is done for various parameter values and

shown for those that correspond to p(s) = (0.5)°.

7.3 Discrimination Procedure : Method 1

The results of the simulation study are summarized in tables 7-12. Tables 7-9 are examples
of typical values obtained by a single run of the simulation. Tables 10-12 provide the propor- :
tions of correct model identification out of 30 repetitions. Note that in table 7 the diagonal
line contains the minimum values of rows 2-5. This is preciscly how we would expect the
procedure to perform for any parameter value indexing a standardized correlation function.

However, errors occure at the first and last rows where the method fails to select the correct
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Table 8: Distance Measure (6.1) : p(s) = (0.5)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 0.67 041 0.74 0.02 1.44 1.43
EAR(1) 0.07 0.01 2.24 0.30 3.34 3.42
TEAR(1) 3.59 2.97 0.085 1.39 0.087 0.10
NEAR(1) 0.64 0.37 0.93 0.005 1.67 1.69
Robertson’s Fixed 4.92 4.27 0.32 2.36 0.06 0.13
Robertson’s Random 2.36 1.91 0.07 0.76 0.26 0.32

Table 9: Distance Measure (6.1) : p(s) = (0.75)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 1.91 1.12 2.28 0.03 3.07 3.02
EAR(1) 1.82 0.02 6.53 0.85 7.79 7.69
TEAR(1) 4.14 3.85 0.46 1.25 0.79 0.93
NEAR(1) 1.83 0.63 3.26 0.09 4.19 4.15
Robertson's Fixed 4.82 4.59 0.31 1.63 0.57 0.70
Robertson’s Random 9.43 10.38 0.51 5.32 0.24 0.36

model. The PAR(1) model is being identified as a NEAR(1) model and Robertson’s Random
model is being identified as a TEAR(1) model. The theoretical plots of the 3"¢-order cumu-
lant structure support this confusion as they show that these models produce very similar
surfaces that are hard to distinguish. In table 8 we note that the procedure fails again
to select PAR(1) and Roberson’s random models.  Errors occur at the first and last two
rows of table 9 where the procedure fails to distinguish PAR(1), the fix and random mod-
els. The incorrect selection that appears in the above tables is consistent with our previous
remark regarding the grouping of the models into three categories. Robertson’s models and
TEAR(1) were identified as sharing a very similar 37%-order cumulant structure and so were
PAR(1) and TEAR(1). Thus. one would expect to have difficulties in discriminating among
models that belong to the same family. The pattern established in the previous tables is
consistent in the 30 repetitions we consider in tables 10-12. PAR(1) is consistently confused
with NEAR(1). and TEAR(1) and Robertson’s models stand out as a separate class. The

random model is by large the hardest to identify and typically is mistaken for TEAR(1)

model. Although the procedure is snccessful in identifying TEAR(1) and the fixed model it
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Table 10: Proportions of Correct Identification : p(s) = (0.25)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 0.0 00 0.0 10 0.0 0.0
EAR(1) 0.03 0.97 0.0 0.0 0.0 0.0
TEARQ1) 0.0 0.0 10 00 0.0 0.0
NEAR(1) 0.0 0.0 0.0 10 0.0 0.0
Robertson’s Fixed 0.0 0.0 0.0 0.0 0.73 0.27
Robertson’s Random 0.0 0.0 0.7 0.0 0.03 0.27

Table 11: Proportions of Correct Identification : p(s)

(0.5)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’s Fixed Robertson’s Random
PAR(1) 0.0 0.0 0.0 i0 0.0 0.0
EARQ1) 0.0 1.0 0.0 0.0 0.0 0.0
TEAR(1) 0.0 0.0 0.7 0.03 0.27 0.0
NEAR(1) 0.0 0.0 0.0 1.0 0.0 0.0
Robertson's Fixed 0.0 0.0 0.17 0.0 0.83 0.0
Robertson’s Random 0.0 0.0 0.63 0.0 0.37 0.0

Table 12: Proportions of Correct ldentification : p(s) = (0.75)°

PAR(1) | EAR(1) | TEAR(1) | NEAR(1) | Robertson’'s Fixed Robertson's Random
PAR(1) 0.0 0.0 0.0 10 0.0 0.0
EAR(1) 0.0 1.0 00 0.0 0.0 0.0
TEAR(1) 0.0 0.0 0.67 0.07 0.26 0.0
NEAR(1) 0.0 0.0 0.0 10 0.0 0.0
Robertson’s Fixed 0.0 0.0 0.47 0.0 0.53 0.0
" Robertson's Random 0.0 0.0 0.53 0.0 0.47 0.0
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Table 13: Proportions of Correct Identification : p(s) = (0.25)°

TEAR(1) | Robertson’s Fixed | Robertson’s Random
TEAR(1) 0.57 0.03 0.4
Robertson’s Fixed 0.13 0.87 0.0
Robertson’s Random 017 0.1 0.73

Table 14: Proportions of Correct Identification : p(s) = (0.5)°

TEAR(1) | Robertson’s Fixed | Robertson’s Random
TEAR(1) 0.7 0.17 0.13
Robertson’s Fixed 0.27 0.46 0.27
Robertson’s Random 0.3 0.5 0.2

is the confusion in selecting the random model that makes it difficult to judge the aduquacy
of TEAR(1) or the fixed model. However, since the three models share very similar traces
and 3"Corder cumulant structure one may choose to accept each of the three as compatible

with any of that group.

To remedy this problem we may apply the proposed discrimination procedure to the 47-
order cumulant structure for these three models. One may argue that since the mnodels share
an identical 2" %-order moment structure and a similar 3"-order cumulant structure (but too
similar so their differences can not be captured by (6.1)), then it might be possible to reveal
their true identity through the use of the 4"¢-order cumulant structure. Tables 13-15 contain
the results of the simulation study applied to the 4"-order cumulant structure of TEAR(1)

and Robertson’s models.  The choice among the models is not clear cut as the proportions

Table 15: Proportions of Correct Identification : p(s) = (0.75)°

TEAR(1) | Robertson’s Fixed | Robertson’s Random
TEAR(1) 0.63 0.3 0.07
" Robertson’s Fixed 0.13 0.57 0.0
Robertson’s Random 0.17 0.47 0.06
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Table 16: Proportions of Correct Identification : p(s) = (0.25)°

ARE(1) | PAR(Q1) | EAR(1) | TEAR(1) | NEAR(1) | Rob’'s Fixed Rob’s Random

ARE(1) 1.0 0.0 0.0 0.0 0.0 0.0 0.0
PAR(1) 0.0 0.7¢ 0.0 0.0 0.27 0.0 0.0
EARQ) 0.0 0.0 0.93 00 007 00 00
TEAR(1) 0.0 0.0 0.0 0.63 0.0 0.03 0.33
NEAR(1) 0.0 0.3 0.03 0.0 0.67 0.0 0.0
Rob's Fixed 0.0 0.0 0.0 0.07 0.0 0.67 0.26
Rob’s Random 0.0 0.0 0.0 0.3 0.0 0.22 0.47

of correct identification are not large enough to enable a reasonable degree of discrimination
power among the three competing models. This result was expected to hold given the

1% order cumulant

theoretical expressions as expressed through the plots for the theoretical
structure, figure 10, In these plots the models are shown to produce similar behavior at
various frames of C'(r,s,u); thus, there is no reason to expect a high degree of discrimination

power among the models on the basis of the proposed procedure and the 4"%-order cumulant

structure.

7.4 Discrimination Procedure : Method 2

In tables 16-18 we provide the results of our simulation study according to (6.1) based on
the empirical cumulant structure only. Note that we added ARE(1) for comparison pur-
poses. Since the marginal moments of ARE(1) are diflerent from the remaiuing models we
standarize its mean to equal one so the mean of the exponential innovation process becomes
I — o. The higher order moments are not standarized to equal those of the exponential
models. {'he results in tables 16-18 are by large consistent with the results obtained
under the previous method. The main difference appears to be in the improved separation
between PAR(1) and NEAR(1) under the second method while under the first method. which
mivolved the theoretical cumulant structure. PAR(1) is consistantly mistaken for NEAR(1).

¢

We nse method 2 with the 1*"-order empirical cumulant structure for TEAR(1) and Robert-

son’s models. The results are summarized in tables 19-21. Figure 11 contains the plots of
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Table 17 Proportions of Correct Identification @ p(s) = (0.5)°

[ T 7T7TARE() [ PAR(1) [ EAR(1) | TEAR(1) | NEAR(1) | Rob’s Fixed | Rob's Random
TARE(L 7T o 00 | 00 0.0 0.0 0.0 0.0
T PAR(L T "'JJ‘A_J DRT 0.0 0.0 013 0.0 0.0
r EAR(L)  “au [T 7oo o | 00 0.0 0.0 0.0
I TEAR(L, T 7 7 0o’ v 0 0.0 0.43 0.0 0.27 03
M NEAR() 7 o AT 0.0 02 0.53 0.0 0.0
T RobS Fixed | 00 T 0.0 0.07 0.0 0.63 0.3
Rob's Random - 0.0 0.0 00 0.3 0.0 0.4 0.3

Table 1%: Proportions of Correct Identification : p(s) = (0.75)°

ARE(1) | PAR(1) | EAR(Q1) | TEAR(1) | NEAR(1) | Pob’s Fixed Rob’'s Random

AREQ() 1.0 0.0 0N 0.0 0.0 0.0 0.0
PAR(1) 00 057 0.0 0.0 0.43 0.0 0.0
EAR(1) 0.0 0.0 1.0 0.0 0.0 0.0 0.0
| TEAR(1) 0.0 0.0 0.0 0.43 0.03 0.2 0.34
NEAR(1) 0.0 0.53 0.0 0.0 0.47 0.0 0.0
Rob's Fixed 0.0 0.0 0.0 0.23 0.0 043 0.34
Rob's Random 0.0 0.0 0.0 0.3 0.0 0.3 0.4

the simulated 4*-order cumulant structure for the three models. The resalts confirm our

previous comment regarding the difficulties encounterd by the discrimination procedure in

distinguishing among these three models.

8 Conclusions

The problem of discrimination among non-linear time serics models is considered in this
paper through the family of exponential models. In this specific case we are able 1o develop

the theoretical 3" -order cumulant structure and confirm it by simulation. The procedure we

Table 19: Proportions of Correct Identification : p(s) = (0.25)°

{ TEAR(1) | Robertson’s Fixed | Robertson’s Random
i TEAR(1) 0.10 0.27 0.33 ]
1:*R6bertson’s Fi..ed 0.13 0.54 0.33

' Robertson’s Random 0.10 0.33 0.27 |
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Table 20: Proportions of Correct Identification : p(s) = (0.5)°

TEAR(1) | Robertson’s Fixed | Robertson’s Random
TEAR(1) 0.27 0.20 0.53 ]
Robertson’s Fixed 0.23 0.40 0.37
Robertson’s Random 0.27 0.3 0.43

Table 21: Proportions of Correct Identification : p(s) = (0.75)°

TEAR(1) | Robertson’s Fixed | Robertson’s Random
TEAR(1) 0.30 0.30 0.40
Robertson’s Fixed 0.27 0.33 0.40
Robertson’s Random 0.27 0.30 0.43

proposc is not restricted to the class of AR(1) type models or the class of models for which
analytical results for the 37%-order cumulant structure are available. It is a general procedure
with the potential for a wide range of non-linear models. It is based in the understanding
that different models cannot have an identical moment sequence ; hence, the discrimination
among them would become possible at some stage in the higher order cumulant structure.
In our specific case we are able to obtain a significant improvement in our discriminatory
power just by going one step above the traditional sccond order moment analysis i.e. the
correlation function. While second order moments play a dominating role in linear model
discrimination they are very limited in the non-linear case. When the 2"%-order analysis fails
to provide encugh information we propose to apply higher order moment analysis for the

purpose of model discrimination.
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MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND
GOODNESS-OF-FIT

Michael A. Stephens,
Simon Fraser University, Burnaby, B. C., Canada V5A 1S6

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions, and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few, or even all, the moments or cumulants may be found, but
whose density f(z) and distribution F'(z), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k
S=3Y Mi(w)? (1)
i=1

where u, arei. i. d. N(0, 1), and }; are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X2 statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are estimated by maximising the
usual likelihood, rather than the multinomial likelthood, has this distribution
with some A; # 1. Other goodness-of-fit statistics, of Cramer-von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be tabulated, for ¥ = 2, involved errors in
target hitting during World War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k, but the analysis after £ = 5 or 6 rapidly
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becomes very difficult. Thus in general it is difficult to find exact percentage
points of S, but the cumulants k., r = 1,2,.. ., are very easily obtained:

2'—1(r (2)

NMa-

2 Moments and cumulants

In this section we list definitions. The r-th moment about the origin of a random
variable X, or equivalently of its distribution f(z), will be called u.; the r-th
moment about the mean will be i,. The moment generating function Mx(t) of
X is defined by

=2
M= [ e f@)ds, ®
~00
when expanded as a Taylor series,
! tr
Mx(t) = 1+pt+";, +"§, +op B (4)

where g = pf is the mean of X.
Cumulants «, are defined through the cumulant generating function Cx (t) =
log Mx (t), where “log” refers to natural logarithm. Then

3 r
Cx(t)_n1t+'°;f +5§f—+ +5—'t—+ (5)

Thus in principle we must find Mx (t) before finding Cx(t).

The following relationships exist between low-order moments and cumulants:
Ky = f} = p; K3 = fl3 = 0%; K3 = pa; K4 = pg ~ 3p3. Further relationships may
be found in Kendall and Stuart (1977, vol 1).

Suppose Z = X1 + X3 + X3+ ...+ Xi where X; are independent random
variables. Then a property of moment generating functions is

Mz(t) = Mxl (t) MX:(t) an(t) .- 'Mxh(t)l

80 that
Cz(t) = Cx, () + Cx,(t) + - - - + Cx, (1), (6)

and it quickly follows, using obvious notation, that
£ (Z) = Ke(X1) + 6. (X2) 4 - - + K, Xy )
This additive property makes it very easy to find cumulants of sums of inde-

pendent random variables, and hence, for example, the cumulants of S.
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Two important Mx(t) are those of the N(u,o?) distribution, Mx(t) =
exp(ut + 2t?/2), and the x? distribution, Mx(t) = 1/(1 — 2t)?/2. Finally,
it is easily shown that g.(aX +b) = a"u,(X), for r > 2, where a and b are any
real constants, and k.(aX +b) = a"k.(X),r > 2.

As an example, consider S. If X has a x? distribution, the MGF of X
is 1/(1 — 2t)*/2; thus Cx(t) = —1log(1 — 2t), and expansion gives Cx(t) =
t+ 2t + 5:-},: + 5%-‘- + ---. Thus the r-th cumulant of X is x, = 2"~ }(r — 1)!,
that of A; X is AT«,, and by the additive property (7), the r-th cumulant of S
is given by the expression (2).

3 Mathematical approximations

The approximations in this section are called “mathematical” because they are
based on mathematical analysis, with known properties of accuracy and conver-
gence, in contrast to those to be considered later.

Suppose n(t) is the standard normal density

n(t) = e~ 12 \2x (8)

and let f(z) be the (continuous) density of X. Then it is (nearly always) possible
to expand f(z) as

f(z) = n(z) {1 + %(#2 - 1)Hy(z) + %#3”3(2) + %(#4 — 62+ 3)Hy(z) + .. }

(9
called a Gram-Charlicr series. The H,(x) are Hermite polynomials. Lists of
Hermite polynomials, and also conditions for convergence, etc., are given in
Kendall and Stuart (1977, vol. 1).

The basic technique involved in deriving (9) rests on the fact that Hermite
polynomials are orthogonal with respect to the kernel n(z); thus

= 0,i#j
Hi(z) Hi(z)n(z) dz = iz (10)
Then if f(z) = 3, cin(z)Hi(z), multiplication by H;(z) on both sides, and
integration, gives

o= [ ) Hy(e)de/

. When worked out, ¢z = (u2 — 1)/2,¢3 = p3/86, etc.

If an infinite set of moments is available, as for S, the density can be ap-
proximated very accurately using a Gram-Charlier series of sufficient length, but
there are many statistics in practical applications for which it is difficult even
to get the first four moments — see Solomon and Stephens (1977) for examples.
There are two other important drawbacks:
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1. A k-term fit might, at any one value of z, be worse than a (k — 1)-term
fit.

2. Gram-Charlier series with finite numbers of moments can give a negative
density f(z), particularly in the tails.

3.1 Percentage points approximation

A Gram-Charlier-type expansion can also be found for F(z), the distribution
function of X; this can be inverted to give a percentage point for a given cumu-
lative area . Thus suppose F(z4) = a; we want an approximation to z,. A
Cornish-Fisher expansion gives z — § as a series in Hermite polynomials in
z, or (more practically useful) in £, where ¢ is the percentile corresponding to
a for the normal distribution, that is, £ is the solution of

£
/ n(z)dz = a. (11)
—00

Again, problems can arise with the convergence to the desired z,. For more
details on mathematical expansions of Gram-Charlier or Cornish-Fisher type,
see Kendall and Stuart (1977, vol. 1).

4 Pearson curves and other systems

We now turn to a method of approximation which can be thought of as “laying
one curve upon another” — the approximating curve has parameters which can
be varied to make a good fit. The parameters are usually chosen by matching
moments or cumulants. Percentage points of the approximating curve, which
are tabulated or otherwise easily found, are then used as approximations to the
desired points.

A family of approximating curves is the Pearson system, where the (contin-
uous) density f(z) is approximated by f*(z), given by

1 df*(z) _ at+z
f(z) dz T bo+byz +byz? (12)

According to the values of the constants a,bq,b;,b7, integration of the right-
hand side will take many forms, giving great flexibility to the system of den ‘ties
f*(z). With considerable algebra (see Elderton and Johnson, 1969, for details),
the constants may be put in terms of the moments:

Suppose A = 10pqp2 — 1843 — 12u3; then (13)
2
a = #3(“4: 3”2) , (14)
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- — 25,2
bO — ""’2(4,‘2‘,4‘4 3”3) , (15)
by = =—a; (16)
- — 2,2 _ 1942
b2 - (2”2l“4 3;‘3 12"3) . (17)
A
Thus knowledge of the first four moments or cumulants of X will fix the con-

stants above: a further constant C enters on integrating, but is fixed by the fact
that the total integral of f*(z) must be 1.

4.1 Percentage points

When the constants are known, the density f*(z) may be integrated and per-
centage points solved for numerically. Over the years, this was done, at first
very laboriously, for a small range of possibilities, but a quite extensive tab-
ulation was made, using electronic computers, in the late ’60s. These tables
are in Biometrika Tables for Statisticians, vol. II. The form of the tables is
as follows. The percentage points for X, the standardised X-variable given by
X = (z — p)/o, are plotted in a two-way table indexed by the skewness and
kurtosis parameters J; and 2. These are defined by

43 Ha
B e and f = Pt (18)
they have been defined to be scale-free, and /B, takes the sign of usz. S
measures skewness: a large (positive) v/B; means the curve is skewed towards
positive values (long tail is to the right) and vice versa for negative v/f;. A
large (B2 (always positive) means the density has heavy tails. Of course, all
symmetric distributions have 8, = 0; a benchmark to measure kurtosis is the
normal distribution for which 8, = 3. Since x4 = p4 — 3p3, the parameter
72 = B2 — 3 = k4/k3 can also be regarded as measuring kurtosis, with value
y2 = 0 for the normal distribution.

Suppose, for a given S, we have /B, = 0.8 and 3, = 4.6. To use Biometrika
Tables, one enters the appropriate v/B; table, /B, = 0.8, and travels down
the left-hand column until the S, value, 4.6, is reached. Along the row are 17
tabulated percentage points for X, from a = 0.00 to a = 1.00. Interpolation
must be used for \/B;, B2 values not explicitly given.

4.2 Un peu d’histoire

At this point, perhaps, it might be permitted to enliven the account with what
the Guide Michelin calls un peu d’histoire. At the time Biometrika Tables Vol.
I were being prepared, [ was fortunate enough to know Professor E. S. Pear-
son, then retired but still very active, especially as Editor of Biometrika. He
had collaborated with workers in the U. S. to get the tables (Johnson, Nixon,
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Amos and Pearson, 1963) and had carefully compiled the full set by hand. He
had introduced me to Pearson curves, which, to put it mildly, did not figure
prominently in statistical training of the day, and had shown me how effective
they could be. He gave me a copy of the tables to use. I undertook to write
a Fortran program on the IBM 650, to interpolate and find points, given the
first four moments. All 20 tables were then typed onto punched cards; in the
end, I got it down t~ = vroximately 45 minutes per table. This is not such a
dramatic piece of history as Michelin usually provides (assignations and assas-
sinations often play a prominent role), but a diminishing generation of modern
readers will still empathise with the fears of losing the boxes of cards, getting
them wet in the snows of Montréal, etc., not to mention the awful discovery of
a wrongly-typed number!

Since then, programs have been written to integrate the density equation
for f*(z) numerically and to solve for z, for given «, or to provide the tail
area for given z; one of these, kindly given to me by Amos and Daniel (1971),
has been added to my program,; this greatly increases the range of 8; and S,
for which Pearson curve approximations can be found. However, points are
still output from both the Amos and Daniel part of the program and by the
Biometrika Tables part, ostensibly as a check where available, but truthfully as
a sentimental tribute to E. S. P.

Later on, Charles Davis and 1 (Davis and Stephens, 1983) added to the
program to enable a fit to be made using knowledge of an end point (for example,
that the left-hand endpoint of S is zero) and three moments. This is especially
valuable for the type of statistic for which each successive moment requires
exponentially increasing hard work — for example, the distribution of areas, or
perimeters, of polygons formed by randomly dropping lines on a plane — see
Solomon and Stephens (1977). The Pearson-curve fitting program is available
from the author.

Further deveclopments have included algorithms to facilitate use of Pearson
curves —- see, for example, Bowman and Shenton (1979a, 1979b).

4.3 Accuracy of Pearson curve fits

(a) Pearson curve densities are unimodal, or possibly J- or U-shaped, but never
multimodal. They are also never negative.

(b) Percentage points or tail areas found from Pearson curve fitting have been
found, for unimodal long-tailed distributions, to be very accurate in the
long tail, at least for tail areas bigger then 0.005, or the 0.5% point.
Pearson and Tukey (1965) discuss this issue; Solomon and Stephens (1977)
give comparisons. (In making comparisons, one must of course compare
the Pearson curve fit with the correct z,, or the correct area for given z,
for a distribution which is not itself a member of the Pearson family.)
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(c) Davis (1975) has made extensive comparisons with Gram-Charlier fits using
only four moments. Pearson curve fits are better than Gram-Charlier fits
everywhere except for distributions very close to the normal, as measured
by the 5, f2 values.

4.4 Other systems

Johnson (1949) has proposed another family (divided into three parts) of curves
defined by four moments: for example, the Sy curves are those given by the
relation

£=vy+8sinh™' X (19)

where X = (z — p)/o, and 7,8 are to be chosen to make the distribution of
£ as close as possible to N(0,1). A discussion, and tables to facilitate the
calculation of v and &, are in Biometrtika Tables for Statisticians Vol. II. Other
authors have also proposed families of distributions, but they have not come
into such common use for the purpose of approximating percentage points.

5 Use of higher moments

We now turn to the first of two interesting questions — can higher moments
be used to improve the accuracy of Pearson curve fits in the long tail of the
distribution? The long tail will be supposed to lie to the right, as for the
distribution of S; then, since higher values of z will contribute more to the
higher moments than smaller values, we might suppose that fits using higher
moments will improve accuracy. Unfortunately it is not easy to establish the
four constants in terms of higher moments — of course, only four of these would
be needed to fix the constants. A recursion formula exists to generate higher
moments, for r =2,3,...:

rboptr_y + {(r + 1)by +a}up + {(r +2)b2 + 1}py 4 = 0 (20)

In this recursion, the constants a, bo, b; and b2 occur, and this means that one
cannot reverse the recursion and generate , say, s and o2 from uz, pg, us and .

Nevertheless, one can generate the fifth and sixth moments of the Pearson
curve with the same first four moments of, say, S, and compare them with the
true fifth and sixth moments of S. The first two moments are then slightly
changed, and the procedure successively repeated, until the third, fourth, fifth
and sixth moments of cach curve match. This will mean that the mean and
variance of the Pearson curve will not be exactly the same as those for S,
although they will be close, and this will probably make a worse fit in the lower
tail; but for higher z the fit could improve. I have made some comparisons using
this procedure, but, as one might expect, there appears to be no systematic
improvement. In discussion, when this paper was first presented, the suggestion
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was made to use Least Squares to make “closest” fits, in order to compare the
six moments. More work is needed to compare Pearson curve fits along these
various lines, but it is not likely that the improvement will be sure, or will
extend to points far into the tails. In the end it must be remembered that one
curve is simply being laid on top of another, with only four parameters to vary,
and there is no mathematical analysis that will guarantee accuracy.

Other methods for developing accuracy in the extreme tails include numerical
inversion of the Characteristic Function (essentially the MGF with if replacing ¢,
where i = \/=1), or saddlepoint approximations. A method due to Imhof (1961)
uses numerical inversion for distributions such as S, but the computer time
needed increases rapidly as the distance into the tails increases (to give small
tail areas). Field (1992) has recently examined saddle-point approximations for
S. These would seem to give more promise of tail-end accuracy in the long run.

6 Use of sample moments

The second interesting question is: how accurate are Pearson curve fits when
sample moments are used to make the fit? In the earliest days, this was the use
to which Pearson curves were applied — to find a smooth density to describe
a set of data, such as lengths of beans, or width of skulls. Kendall and Stuart
(1977, Vol. 1) gives details of such a fit. In general, the Pearson curves will give
very good fits to a unimodal set of data, or even to J-shaped or U-shaped sets,
but it is important to assess the accuracy of extrapolation from the sample to
the supposed population from which it came. More precisely, we ask how close
the sample fit estimate of, say, the upper-tail 5% point is to the true population
5% point, and, further, whether or not the Pearson-curve point is better than
the estimated point derived from choosing the appropriate order statistic —in a
sample of 1000, the 951st value in ascending order, or in a sample of size 10000,
the 9501st value. Some investigation of these questions has been undertaken in
two quite different ways, by Johnstone (1988) and by myself (Stephens, 1991).
The accuracy of the Pearson curve point will depend on:

1. the sample size n,

2. the a-level (tail area) of the point required,

3. the true skewness and kurtosis of the density approximated,
4. higher moments.

Johnstone gives a small study, for samples from populations with the following
range of parameters:

By 100 00 1.0 1.0 20
B2 133 40 5256 6.0 7.5
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Johnstone gives plots of the estimated coefficient of variation, CV, of the
Pearson curve r, against — log a , where the base of logarithms is 10. Thus the
CV of the estimated zg 01 is plotted against 2, that of the estimated z¢.001 is
plotted against 3, etc . The coefficient of variation is estimated using a Taylor
series approximation. As one might expect, the CV goes up markedly as o gets
smaller (so —loga gets larger on the z-axis), and the steepness of the rise is
greater for the more skew distributions .

In Stephens (1991), Monte Carlo samples were taken from populations for
which exact percentage points could be found, and thc exact pointe were com-
pared with those obtained from {a) Pearson curve fits using the moments of
each sample, a. 1 {b) the order statistic estimate from each sample. The order
statistic estimate 'ill be asymptotically unbiased, while one can say nothing
exact about the poi.t obtained by laying one curve on another; recall that sam-
ple moments, especially the third and fourth, arc extremely variable, even for
quite large samples. The results showed, as expected, that the Pearson curve
points were more biased. However, somewhat surprisingly, they had smaller
mean square error. Therefore, it might well be preferable to use the Pearson
curve points, although, again, more investigations should be made especially if
the points required are far into the tail.

7 Goodness of fit using moments

In this second part of the paper, we discuss how moments are used in Goodness-
of-Fit, that is, to test whether a random sample comes from a given (continuous)
distribution. The distribution will often have unknown parameters, which must
be estimated from the given sample.

7.1 Tests based on skewness and kurtosis

Suppose the r-th sample moment m, about the mean is defined by
1 n
m, = ;Z(I,’ - 1_.‘)'. (21)
i=1

The sample skewness and sample kurtosis are then defined by

2
m my

by = —3,bp = —. 22

== (22)

These statistics are not unbiased estimates of 8, and 3,, but they are consistent,
that is, the bias diminishes with increasing sample size. The sample skewness
and kurtosis are time-honoured statistics for testing normality, having been used
in a rather ad hoc manner for most of this century; #; is compared with zero,
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and b2 with 3, the value of 3, for the normal distribution. However, distribu-
tion theory of b, and by is difficult, and it is only since computers have been
available that extensive and reliable tables of significance points have existed for
these statistics. Further, b; and b2 can be combined to give one overall statistic
(d'Agostino and Pearson, 1973, 1974; d’Agostino, 1986). For other distributions
Bowman and Shenton (1986) have also given tables for these statistics. Stud-
1es have shown that skewness and kurtosis, especially combined, provide good
ommbus tests for normality, although less is known for other distributions. For
the important discrete distribution, the Poisson, all cumulants are equal to the
mean, denoted by the parameter A; a time-hon:ured test for the Poisson is
based on the ratio of sample variance to sample mean, which of course should
be about one. Again, this simple statistic appears to compete well with others
in terms of power.

7.2 A formal technique based on moments

Perhaps because of the variability of sample moments, which makes calculation
of significance points difficult for statistics based on these moments when calcu-
lated from samples of reasonable size, it took some time to formalize a technique
bused on moments. Gurland and Dahiya (1970) and Dahiya and Gurland (1972)
have however devised a general procedure. The essential steps are as follows:

1. A vector { of length s, say, must be found, whose components (; are func-
tions of the theoretical moments, and sucl that each component (; is linear
L the parameters. (This might involve re-parametrising the distribution
from its usual form).

2. The estimate A of { is obtained by replacing theoretical moments by sam-
ple moments.

3. The test statistic is then based on the difference h — (.

Suppose that ¥ is the covariance mairix of £, 8 is the g-vector of unknown
parameters, and W is the s x ¢ matrix such that { = W0. Then decfine

Qi = n(h ~ WYL~ (h — W),

where @ = (WS~ ')~ 'W'S~1h. The statistic 6 is the regression estimate of
6 obtained by generalized least squares, and ¥ is © with the estimate § used
wherever 8 appears.

Gurland and Dahiya (1970, 1972) showed that, asymptotically, the test
statistic Q¢ has the x? distribution with t = s—q degrees of freedom. Currie and
Stephens (1986, 1990) have studied the procedure, and show several properties
of Q. Among these ure the fact that the test statistic Q; can be broken into
t components, each with asymptotic distribution x3, and each testing different




features of the distribution. Each component is a function of moments or cumu-

lants. For example, consider the test for normality, that is, for the distribution

N(j,0%). Gurland and Dahiya (1970) took ¢’ = {u,loguz, pa, log(p4/3)}, so
1 0

0

that b’ = {&, logms, m3,log(m4/3)}. The matrix W is W = 0 , and
0

1
0
2
0= [ 10:02 ] . The test statistic Q2 becomes &, +é;, where the two components

are é, = nm2/6m3 and é; = (3n/8){log(ms/3m?2)}. Thus the method leads to
nb, /6 and (3n/8)log(b2/3) as test statistics, equivalent to the “old-fashioned”
b1 and b,.

However, it should be noted that the components are not unique; they de-
pend on how ( is formed. Currie and Stephens (1986, 1990) discuss these
questions in some detail.

8 Components of other goodness-of-fit statis-
tics

Other goodness-of-fit statistics also have components which are functions of
moments. The oldest of these was proposed by Neyman (1937), in connection
with a test for uniformity.

A test for a fully specified continuous distribution (that is, all parameters
known) can always be converted to a test for uniformity by means of the Prob-
ability Integral Transformation, and a test for the exponential distribution can
also be so converted, even when the scale and origin parameters are not known,
so that Neyman’s test has wider applicability than it might at first appear. (For
details of these transformations, see Stephens, 1986a, 1986b).

Neyman’s test is as follows: suppose the test is that Z has a uniform distri-
bution between 0 and 1, written U(0,1). On the alternative, let the logarithm
of the density of Z be expanded as a series of Legendre polynomials:

log(f(2)) = A(){L + c1L1(2) + caLa(2) + e3La(2) + -}, (23)

where the ¢; are coeflicients, components of the vector ¢, L;(z) is the i-th
Legendre polynomial, and A(¢) is a normalising constant.
A test for uniformity is then a test that all ¢; = 0. The estimates of ¢; are

&= Li(y) (24)
j=1

where 2], 29,..., 2z, is the given sample.
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The first few Legendre polynomials are best expressed in terms of y = 2—0.5.
Then

Li(z) = 2\/§ya (25)
Lo(z) = V5(6y* ~0.5), (26)
La(z) = V7(204° - 3y), (27

so that the estimate é; becomes a function of the first moment about the known
mean (.5, the second estimate é2 becomes a function of the second moment, é3
a function of both the third and the first moments, etc.

Neyman shows that the suitably normalised é; have asymptotic N 1, 1) dis-
tributions, and his overall test statistic is the sum of the squares of thes. nc -
malised estimates. Thus the overall statistic has an asymptotic x? distribution,
just as for the Dahiya-Gurland statistic, and the individual terms, based on
morments, are the components of the overall test statistic.

9 EDF statistics

Another important family of goodness-of-fit statistics is that derived from the
Empirical Distribution Function (EDF) of the z-sample. This family includes
the well-known Kolmogorov-Smirnov statistic and the Cramer-von Mises family
of statistics (for details and tests for many distributions based on these, see
Stephens, 1986a).

One of the most important of the Cramer-von Mises class is A2, introduced
by Anderson and Darling {1954). The definition of A? is based on an integral
involving the difference between the EDF and the tested distribution F(z) (with
parameters estimated if necessary). The working formula is

2 1 .
A*=-n- - 2(22 ~ 1) [log z(iy + log(1 = z(n41-4))] » (28)

where z; = F(z;), and z(;) are the order statistics.

As an omnibus test statistic, A2 has been shown to perform well in many
test situations.

Anderson and Darling showed that the asymptotic distribution of A2 is,
like S of Section 1, a sum of weighted x? variables. The individual terms
in the sum can again be regarded as components of the entire statistic, and
Stephens (1974) has investigated these components in some detail. A remarkable
result is that they too are based on Legendre polynomials, so that they are
effectively the same as the Neyman components, based on moments of the z-
sample. There has been some investigation of components of these and other
statistics, as individual test statistics for the distribution under test; references
are given by Stephens(1986a). As for the Gurland-Dahiya components, they can
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be expected to be sensitive to different departures from the tested distribution.
The complete test statistics of Neyman and of Anderson-Darling combine the
same components, but with different weightings.
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Abstract

Higher-order statistics (HOS) are now very widely used. Two areas where thev
begin receiving considerable attention are array and speech processing. This paper
describes some recent applications of HOS in both areas by the authors [15]-[20].

In our speech processing application, we demonstrate a way to better discriminate
between voiced and unvoiced speech. This is accomplished by observing the behavior
of a cumulant-based adaptive filter, and makes use of the fact that unvoiced speech is
Gaussian, whereas voiced speech is definitely non-Gaussian. We have also shown a way
to utilize the prediction residual from the adaptive filter to estimate the pitch period
for voiced speech.

Array processing encompasses a multitude of problems, including beamforming
and direction-of-arrival (DOA) estimation. We have developed fourth-order cumulant-
based blind optimum beamforming algorithms that outperform existing methods. The
term blind indicates that our methods do not require a priori knowledge of array geom-
etry and DOA. nor they are affected by multipath propagation and presence of smart
jammers. Extensive simulations support our theoretical claims on the optimality of
our beamforming procedure.

1 Introduction

Our work on speech processing describes a method that consists of an adaptive predictor, a voicing
decision (V/UV), and a pitch period estimator. The focus of this study is on robust detection of
speech state and estimation of pitch period. This is accomplished by observing the behavior of an
adaptive predictor which processes the speech signal. Higher-order- statistical analysis is proposed
for discrimination of speech states. Comparing the energy of the original speech signal with that
of the prediction-error residual yields the decision method. Both covariance and cumulant-based
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prediction methods are investigated and the latter is shown to be a more robust way of making
(V/T'V) decision. Pitch estimation is accomplished by using correlation-based approaches that
operate on the energy estimate of the cumulant-based prediction residual rather than the original
speech signal. Pitch estimation by our method yields better portormance than currenily existing
bateh procedures.

Array processing work, as described in this paper, addresses the problem of blind optimum
heamforming for a non-Gaussian desived signal in the presence of interference. Sensor response,
location uncertainty and use of sample statistics can severely degrade the performance of optimum
heamformers. In this paper, we propose blind estimation of the source steering vector in the pres-
ence of multiple, directional, correlated or coherent Gaussian interferers via higher-order-statistics.
In this wav, we employ the statistical characteristics of the desired signal to make the necessary dis-
crimination, without any a-priori knowledge of array manifold and direction-of-arrival information
about the desired signal. We then improve our method to utilize the data in a more efficient man-
ner. In any application, only sample statistics are available. so we propose a robust beamforming
approach that employs the steering vector estimate obtained by cumulant-based signal processing.
We further propose a method that employvs both covariance and cumulant information to combat
finite sample effects. We analyze the effects of multipath propagation on the reception of the desired
signal. We show that even in the presence of coherence, cumulant-based beamformer still behaves
as the optimum beamformer that maximizes the Signal to Interfereid - plus Noise Ratio (SINR).
Finally., we propose an adaptive version of our algorithm. Simulations demonstrate the excellent
performance of our approach in a wide variety of situations.

2 Cumulant-Based Adaptive Analysis of Speech Sig-
nals

Voiced /Unvoiced (V/UV) decision is an important problem in speech processing. Almost all speech
coding, recognition and speaker identification systems require this information for an effective
processing of speech data. In addition. low-delay speech processing svstems require this decision
be provided in real-time. In [2] some commonly emploved features are described. and a subset of
them are used to train an artificial neural network to perform V/UV decision.

In frame-based analysis of speech signals, feature extraction is performed on the current block
of data. and a decision is given at the end of the period. For this reason, frame-based methods
are incapable of tracking rapid changes in signal characteristics. Transitions of the state of speech
within a frame period affect the decisions resulting from a frame-based analyzer. In general, this
mixed state of speech within a period can not be identified and incorrect decisions will be made.
This will degrade the performance of the overall speech processing system. In addition, frame-based
analysis introduces delay. which may not be tolerable in low-delay systems.

Severe non-stationarity observed in speech signals and low-declay requirements of the contem-
porary speeclt processing systems motivate the use of adaptive algorithms for feature extraction
in place of their batch counterparts. In general, adaptive processing techniques are designed to
mininiize some least-squares error criterion. Their use is motivated by the assumption that the
processes are Gaussian and the performance analysis is tractable with this assumption [3]: how-
ever. this approach ignores the non-Gaussian nature of the underlying signal.

Adaptive prediction of the incoming signal and continnous monitoring of prediction error power
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Figure 1: Typical speech signals: (a) Unvoiced speech, (b) Voiced speech.

makes detecting changes in the spectral characteristics of the process possible. We may consider
such a change as an cvent. After an event, an adaptive unit will require a period to adjust itself
for the new configuration. During this learning period. prediction error power will temporarily
increase. This observation was used in 135, to detect abrupt changes in the autoregressive (AR)
parameters of a linear process. If a lattice form is used rather than a finite impulse response (FIR)
fitter. reflection coeflicients will be available for monitoring purposes. In addition, adaptive lattice
filters exhibit better learning characteristics than their FIR counterparts. This may improve the
ability to localize the event when prediction error power is monitored.

[n this studv, we shall investigate the application of adaptive prediction methods to detect
V/UV transitions in speech signals; hence, events of interest will be V/UV or UV/V transitions.
Our approach will take the speech production model into account and utilize higher than second-
order statistics of speech signals.

2.1 Speech Production Model

The state of speech signal belongs to three categories: voiced, unvoiced and silence. Silent periods
can be detected easily by monitoring zero crossing rate and energy of the received signals [53]. For
this reason, we shall concentrate on voiced /funvoiced classification of speech.

Unvoiced sounds are generated by forming a constriction at some point in the vocal tract
and forcine air through the constriction at a high velocity to produce turbulence. This creates
a broad spectrim noise soiirce to excite the vocal tract. The energy concentration is shifted to
the hielofrequency end of the spectrum for unvoiced sounds, hut the spectrum is relatively flat
when compared with that of voiced speech. Due to large number of random effects involved in the
production of unvoiced speech. Ganssian noise is a valid candidate as the excitation source. This
assumption is validated by Wells [731. In his work. the bispectrum is used to make V/UV decision.
It has been fonnd that hispectrum of English fricatives tend to zero, but for vowels the situation is
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Figure 2: Adjacent sample correlation of speech signals.

inst the opposite. A typical unvoiced segment of speech is shown in Fig. la.

Voiced sounds are produced by forcing air through the glottis with the tension of the vocal
cords adjusted so that thev vibrate in a relaxation oscillation. thereby producing quasi-periodic
pulses of air which excite the vocal tract. This excitation is clearly non-Gaussian. The energy
concentration is in the low-frequency side of the spectrum in the form of a fundamental component
and its harmonics. In addition, voiced sounds have more energy than unvoiced sounds. A typical
voiced speech segment is shown in Fig. 1b.

For voiced sounds, the vocal tract can be modelled as an all-pole linear system. The same model
also holds for unvoiced sounds but the AR order is less. Correlation between adjacent samples is
high for voiced sounds. On the other hand, unvoiced speech resembles white noise since its spectrum
is relatively flat. vielding small correlation between adjacent samples. Correlation sequences for
voiced and unvoiced cases are illustrated in Fig. 2.

The differences in the excitation and correlation properties for these two cases can be used to
discriminate between them: however, with second-order statistics we can only use the correlation
properties but can not utilize the information abont the excitation model. This motivates the nse
of higher-order cumulants of speech signals.

2.2  QOur Approach

In the previous section, we mentioned the distinctions between voiced and unvoiced sounds: corre
fation amone adiacent samnles and excitation models. Tn this section. we shall investigate methods
that fully ntilize this information.

Linear prediction (LP) methods are emploved to accomplish our goal: however, we shall not use
batch-type methods for reasons outlined previously. Linear prediction can be based on second-or
ligher-order statisties, however the former is usually emploved. Linear prediction is essentially
wWentifving the inverse of a linear svstem driven by white noise: hence, it can be considered as a




syvstem identification problem. The svstein under consideration can be approximated by an AR
model. so an FIR prediction filter will whiten the spectrum of the incoming signal.  We <hall
investigate the differences between cumulant-and covariance-based adaptive prediction methods ju
this section.

2.2.1 Second-order statistics based adaptive filtering

Correlation-based adaptive prediction fiiters tend to minimize the prediction error power at the
output of the filter. Since correlation among adjacent samples is high for voiced signals, we can
reniove a large proportion of energy fror the original speech signal using prediction. On the other
haud, in the case of unvoiced sounds, LP will not be that snccessful due to small correlation amone
sammples. Therefore, a comparison of the input signal power with the power in the prediction residin]
will reveal the state of the speech signal.

Lattice prediction filters enable monitoring the variation of prediction error power with modej
order due to their specific structure. Autoregressive model-order-selection can be performed by
selecting the tap which results in minimum prediction-error power. This leads to another dis-
crimination between voiced and unvoiced sounds | since this order will be relatively lower for the
unvoiced case.

2.2.2 Fourth-order statistics based adaptive filtering

In this section. we shall investigate the behavior of a fourth-order cumulant- based adaptive filter.
An adaptive algorithm for estimating the parameters of nonstationary AR processes. excited by
non-Gaussian signals is proposed in [65]. and some modifications are suggested in [22]. We used
the method of [65), which is in the software package Hi— Spee’™ (trademark of United Signals
and Svstems, Inc.) [33]. The ideas for the covariance-hased filter directly apply to this case with
one important exception: the cumnlant-based adaptive filter provides the solution to the cumulant-
based normal equations, and this solution is nof the one that minimizes the prediction- error power:
however, one may argue that if the speech production system can be identified accurately, then the
prediction error should be close to the minimum possible value.

With higher-order statistics. we have the diversity of using the excitation information: for
voiced sounds , the excitation is non-Gaussian: hence. the speech production mechanism can be
identified by cumulant-based AR equations. On the other hand. for nnvoiced sounds the excitation
is Gaussian, making the identification problem ill-posed' The cumulant-based adaptive filter will
not be able to identify the system and, since there is no associated outpul-power minimizatiop
criterion, prediction-error power may arbitrarily increase. In this case. a cumulant-based filter may
even amplify the speech signal making the power reduction by prediction comparison more clear
thau when using a covariance-based method.

To validate our ideas about covariance and cumulant-based adaptive prediction of speech signals.
we performed some experiments using data from the TIMIT speech recognition database. The
resufts verify our claims and are provided in the next section.

'A cumulant-based filter provides the solution of cutnnlant-based normal equations in an adaptive fashion:
however, this set of equations becomes trivial when the input 1o be analyzed is a Gaussian linear process,
because higher than second-order cunmmlants of Gaussian processes are zero
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2.3 Experiments

We start our experiments by investigating the prediction performance of correlation-and cumulant-
based linear predictors in voiced speech case. An indication of performance is the energy of
prediction-error residual at the output of the filter. For this purpose, we selected a voiced speech
segment from the TIMIT database and performed adaptive filtering based on both correlation and
cumulants. We expected that the correlation-based filter would yield better performance, since it is
designed to minimize prediction-error power. The original speech signal is scaled so that estimate
of its variance is unity. The results of this experiment are shown in Fig. 3. Energy values reported
in this figure represent the estimate of the variance of the signal averaged over the data window.
Interestingly enough, the cumulant-based filter performed better than its covariance counterpart,
although the latter is designed to minimize the power of the prediction residual. We repeated this
experiment with other speech segments and in all of the cases, cumulant-based filter outperformed
covariance-based filter.

In voiced speech, a conventional system identification approach for estimating the AR param-
eters, using a least-squares fit procedure, suffers due to the nature of the excitation sequence. It is
known that, for voiced speech. the source is definitely non-Gaussian ; it is quasi-periodic in nature
with spiky excitations. The impulsive nature of the excitation in voiced speech is exploited in [40],
by making a Bernoulli-Gaussian assumption to develop a multipulse coding scheme. In [39] . a
robust linear prediction algorithm is proposed which takes into account the non-Gaussian nature of
source excitation for voiced speech by assuming the excitation is from a mixture distribution, such
that a large portion of the excitation sequence is from a normal distribution with small variance
while a small portion comes from an unknown distribution of higher variance. Such a distribution
is called heavy-tailed Gaussian. Based on the above mixture model, a linear prediction algorithm
is devised which employs robust statistical procedures ( developed in [34] ) that operate in a batch
mode. Although satisfactory performance is observed, the method can not track the transitions
in the input data. This points out a very important fact : conventional linear prediction can be
unsatisfactory due to incorrect modelling of the excitation. Of course, this carries over to the
adaptive domain, i.e., a correlation-based adaptive algorithm may not be able to yield the best
possible fit in the presence of outliers in the data. On the other hand, a non-Gaussian excitation
is required bv higher-order-statistics-based identification algorithms. A cumulant-based adaptive
filter is able to reduce the power in the signal by effective prediction. although it is not based on a
criterion for minimizing the power of prediction residual. Power reduction may be even more than
that provided by a covariance-based filter due to the just described outlier problem.

To analvze the behavior of adaptive predictors in voiced and unvoiced speech states, we selected
a 250 msec period of speech segment in which there are two transitions: voiced (0-75 msec), unvoiced
(75-190 msec) and again voiced (190-250 msec). This signal is shown in Fig. 4.

We used an order ten predictor for adaptive filtering of the speech waveform. Figure 5 shows
the prediction-error from a covariance-based filter. Observe that an adaptive filter based on a
power minimization criterion will turn off during the unvoiced period: hence, this segment passes
undistorted through the filter. The reason for this (as explained previously) is the small adjacent-
sample correlation for unvoiced sounds which makes the process unpredictable. To minimize the
output power.the filter turns off; however, during voiced segments deconvolution is successful. We
observe a quasi-periodic pulse train for the prediction residual. which is in accordance with the
excitation model for voiced speech production.
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Figure 1: Speech signal to be used in the experiment: (a) first 125 msecs, (b) last 125 msecs.
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Figure 6 depicts the cumulant-based filter residual. During voiced periods, successful decon-
volution is possible since the excitation is non-Gaussian, and again a quasi-periodic pulse train is
observed at the output of the filter. Now, however, the filter amplifies the speech signal during
the unvoiced segment. As explained before, during this mode of operation, the system identifica-
tion task is ill-posed, and, since this filter has no power minimization criterion, the power of the
prediction residual becomes higher than the unvoiced speech signal.

To make better comparisons concerning the encrgy of the original speech and prediction resid-
uals, obtained via the two different filters, we illustrate the energy estimates in Fig. 7. Energy
is estimated by first squaring the signal and then performing low-pass filtering using a 15 point
Hlamming window. Fig. 7 shows that, by comparing the prediction-residual power and the original-
signal power, it is possible to make reliable V/UV decisions. With the cumulant-based method,
even better results are obtained, because it amplifies the input data during unvoiced periods.

The observations from this experiment, validate our earlier statements; however, using a predic-
tor may bring additional advantages as well. One important by-product is pitch period estimation.
Pitch period is the time difference between the quasi-periodic excitation pulses during voiced speech.
After the V/UV detection step, better pitch estimation is possible by operating on the energy esti-
mate of prediction-residual rather than on the original speech signal. From Fig. 7, we observe that
the peaks in the energy estimate sequence are spaced by a pitch period during voiced periods and
they are sharper than the ones in the original speech signal due to combined filtering and squaring
operations. Consequently, we may apply the correlation-based approach described in [18] to the
energy estimate sequence, for a reliable, simple but robust calculation of pitch period. In [18], pitch
estimation is accomplished as follows: low-pass filtered speech signal is quantized to three levels;
-1.0.1 and the correlation sequence of this quantized signal is obtained. Covariance calculation is
simple with the quantized sequence, since it can be performed only by addition. Finally, a peak-
picking method estimates the pitch period. Peak-search is performed on the possible range of values
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2.4 Conclusions

L this work. we showed that it is possible to track transitions in the state of speech using adaptive
lnear prediction. Both covariance and cumulant-based methods are investigated, and greater
contrast between V/UN cases is demonstrated by the latter method because cumulants can use
the difference in the excitation model of the two speech states.

Pitch-period estimation is also possible by linear prediction. Rather than operating on the
original sienal. we prefer to eploy the prediction-error residual available from an adaptive filter.
Cunlant-based approach operating on the power estimate of the residual process is shown to be
a practical way of pitch estimation,

We investigated the prediction performance of adaptive predictors based on correlation and
cumnlants and found that cumulant-based prediction can outperform correlation-based prediction.
althongii the latter is designed to minimize the power of the prediction residual. We conjectured
that cutliers in the excitation model of voiced speech result in this phenomena. Better predic-
tion performance obtained via cumulants is worth investigating analyvtically; however, this is not
tractable with real or svathesized speeeh since there are many parameters involved. Simpler cases.
such asa smgle sinusoid in Gaussian noise can be analvzed to evaluate the performance of cumulant

and covariance-based adaptive-line-enhancers.
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Fieure X: Pitch-period estimation experiment. (a) Original speech signal; (b) energy es-
thnate of prediction-error residual from cumulant-based filter; (¢) pitch contour obtained
by processing energy-estimate sequence using the method in [18]; and (d) autocorrelation
sequence of the second voiced speech segiment processed by the method in [37], leading to a

Bross error.

3 Cumulant-Based Blind Optimum Beamforming

Array processing techniques play an important role in enhancement of signals in the presence of
interference. .\ number of books. and an extensive literature [13.30-32,42,44.50.64,68] have already
been published. Capon’s minimum-variance distortionless response (MVDR) beamformer [8] has
been o starting point for both signal enhancement and high-resolution direction-of-arrival (DOA)
estimation.

In recent vears. there has been an increasing interest in high-resolution array processing
techiniques based on eigendecomposition of the covariance matrix of received signals [4.17,26-
27.36.3%56.60-61.69.71]. To recover the signal of interest in the presence of interfering signals, the
so-called COPY function [5%] is nsed. In this procedure. DOA’s for all signals are first estimated,
and then the minimum-variance processor that reconstructs the desired signal and minimizes the
contribution of all interference sources is implemented. All of the previously referenced methods
rely o complete knowledge of responses and locations of array elements and/or DOA information
of the desired signal.

If the array manifold is nnknown. or there are uncertainities, it is then necessary to calibrate
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the arrav [55.72] © however: this is not a practical thing to do. since calibration must be done quite
frequently, and. each time, array-manifold information must be stored. In addition, calibration
sources way be required. Fven small errors in the calibration procedure may considerably degrade
the performance. Sensitivity analyses of high-resolution methods and MVDR beamforming have
been presented in [1112.14.16.24-25,29.70.76].

In this study. we shall enploy higher-order statistics of received signals to estimate the steering
vector of the non-Gaussian desired signal in the presence of directional Gaussian interferers with
nuknown covariance structure. We assume no knowledge of array manifold, and DOA information
about the desired signal. Desired signal may be voiced speech, sonar signal. radar return or a com-
munication signal. In onr work. we specialize to the communications scenario, which requires the
use of fourth-order cumulants. Following a mathematical formulation of the problemn in Section 3.1,
we deseribe blind estimation and optimum beamforming procedures in Section 3.2.

Any estimation procedure is subject to errors, as is our cumulant-based source steering vector
estimation method. In theory, cumulants are blind to Gaussian noise; however, their estimates are
corrupted by such noise. In order to obtain satisfactory results. longer data lengths are necessary in
cumulant-hased signal processing. To alleviate the effects of estumation error in the beamforming
stepo we propose a more eflicient estimation procedure that fully utilizes the data acquired by the
arrav. We further suggest a method of combining cumulant and covariance informatiou to yield
better estimates. Then we employ a robust beamforming method based on artificial noise injection
to combat mismatel i the source steering vector. We cousider the estimation error as a mismatch
and successtully apply this robust approach to our problem. These methods are presented in
Section 3.3,

In a commuunications environment. multipath propagation almost always take piace. In this case,
all eigendecomposition-hased techniques and MVDR fail. Only in some specific array configurations
i~ it possible to decorrelate incoming signals and then estimate their DOA’s. We analyze the
beliavior of onr cunmmlant-based approach in Section 3.4. We show that our proposed approach
behaves as the optinnin beamformer that maximizes the Signal to Interference plus Noise Ratio
(SINK).

For real-time operation {a necessary requirement in communications applications) we propose
an adaptive implementation of the ciwmulant-based beamformer in Section 3.5. We then present
sitmulation experiments to indicate the performance of our approach in Section 3.6. Finally, we
draw our conclusions in Section 3.7,

3.1 Problem Formulation

We formmlate onr problem in a narrowband fashion. T array processing, a problem is classified as
warrowband i the signal bandwidth is small compared to the reciprocal of the time required for
the signal wavefront to propagate across the arrayv. For a discussion on bandwidth, see [60.63].

In our formalation, lower and upper case italic letters are used to represent scalars, lower case
bold iont letters are used for vectors. and. upper case bold font letters are used for matrices.

3.1.1 Signal Model

Consider an array of M oelements. with arbitrary sensor response characteristics and locations.
A-sie there are S Ganssian interference signals { 7,(4). j = 1.2.....J }. and a non-Gaussian
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destred signal d(t). centered at frequency w,. We assume sources are far awayv [rom the array so
that a planar wavefront approximation is possible. The additive noise present is assumed to be
Gaussian with unknown covariance. With these assumptions. the received signal at the kth sensor

cant be expressed. as
J
relt) = ai (8 dit) + Zak(()l‘) i,/({) + () “)

J

a=1

where,
o 4. the direction-of-arrival of the wavefront corresponding to emitter .

o «i(#,) : response of the Ath sensor to rth signal wavefront. including the phase factor asso-
ctated with the 1ravel time of the signal wavefront with respect to a reference point; without
loss of eenerality. this point can be taken as the first sensor location.

. \ . . . . . )
o i) the desired non-Gaussian signal as received at sensor 1. with variance 3.

o sty the yrhinterferer wavelorm as received at sensor 1: interference signals are assumed
to be independent of the desired sienal. and they are Gaussian processes.

o ot the addinive noise at the Al sensor.

Paguation ¢ 1y can be rewritten o mairix notation. as
|

rol) dit) ny(t)
ot alt) ity

= | alf,). ald, ). ---.aib,,) . + ) (2)
Py Ly(t) ()

where a(# ) represents the M xl steering vector for the wavelront {rom emitter »r. which can be
expressed as
r . 11
a(f.) = | (b a (0. a6, | (3)
We detine the array manifold as the collection of steering vectors over all DOA's of interest. Alter-
native expressions tor the received signal vector are,

rit) = Az(t) + n(t) = a(by) d(t) + Aqi(?) + n(t) (1)

L this last expression. we partitioned the Mx(J + 1) steering matrix A as.
A = a{f;). Ajg (5)

where the WxJ matrix Ap is the steering matrix for interference sources.

I this paper. we address the problem of optimum beamforming with an arrayv of sensors whose
tespotses and locations are completely unknown: hence. although we may have a priori knowledge
abowt the direction-ot-arvival of desived signal. we can not perform beamforming due to the lack of
hnowleder of array manifold. Tu {237 this problem is addressed: however. [23]'s algorithm is limited
tona stuele dnterference sienal. We investigate the possibility of a more general solution: namely.
~ienal recoveryin the presence of madtiple interferers whose correlation structure is unknown. Before
presewtig our approach. which emaplovs higher-order statisties. we demonstrate the limitations of

ovartatce based arvay processine for this problem.




3.1.2 Covariance-Based Approaches

Currently used high-resolution methods of DOA estimation and minimum-variance distortionless
response beamforming (MVDR) employ the covariance matrix of signals received by the array. The
wavefront covariance matrix, S, is defined as the covariance of the source signals as received at the
reference point, i.e., at sensor 1:

S = ¢ {z(t)2'"'(1)} (6)

where () denotes complex conjugate transpose. Using the received signal model in (4), we can
express the MxM covariance matrix R of array measurements in the following two ways:

R = &{r(1) (1)} = ASAY + R, = o? a(b4) a’'(6s) + R, (7)
wlicre R, is the noise covariance matrix,
R, = ¢ {nt)n''(t)} ()
and. R, i~ the covariance matrix of the nndesired signals. i.e.,
R, = &{[A[iit) + n(t)][Aritr) + n(0) ]} (9)

In eeneral, the noise covariance matrix. R, is unknown. With sowe restrictions on array ori-
entation and noise covariance structure, some approaches for high resolution DOA estimation are
proposed in [17.52] that do not require this information; however, these techniques have their limi-
tations due to involved assumptions. BEven with complete knowledge of noise covariance structure,
source localization is still impossible without the knowledge of array manifold. In [56], ESPRIT
algorithm is devised to overcome this problem; however, ESPRIT requires transitionally equiv-
alent subarrays with known displacement vectors, which may also be impractical due to all the
constraints on array orientation. In {21]. an cigendecomposition-based heamforming approach is
proposed which assumes the identifiability of the signal subspace and availability of the steering
voctor information for the signal of interest. Good results were obtained under these assumptions;
however, this method can not handle coherent interference and spatially colored noise.

[n [9-10.57] . blind estimation of steering vectors for independent emitters is discussed with the
following conclusion:

Blind estimation of source steering vectors is not possible with only second-order
statistics, but employing higher-than-second-order cumulants, it is possible to estimate
sonrce steering vectors up to a scale factor,

MVDR beamforming is an alternate approach for signal recovery. This approach however,
tequires knowledge of the steering vector for the desired source up to a scale factor and uses the
covarianee matrix R of received signals for processing. ‘I'he output of the MVDR beamformer y(t)
can he expressed as [N

gty = wlety = [, R a(dy) )7 v(1) (10)

where the constant 4y is present to maintain a specified response for the desired signal and w
denotes the weight vector of the processor.

From the above expression. it is clear that MVDR beamforming requires knowledge of a(8y).
Without knowledge of array manifold. it is not possible to determine a(8,) even in the case of known
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# ;. Therefore. NMIVDR beamforming can not be directly applied to our problem. Iu addition, the
MVDR beamformer is quite sensitive to errors in assumed sensor locations and characteristies [11-
12,1 1.29.70.76].

In wany applications. multipath propagation takes place resulting in coherent sources. Coher-
ence presents a serions probletn 1o DOA wethods: it leads 1o a singular source covariance matrix
S. for which it is not possible to estimate source locations except in some specific array configura-
tions [IN19.61-62.66.71.75]. In the MVDR case. source coherency does not represent a problem as
long as there is no source correlated with the desired signal; however. this situation is rarely met
i practice. In generat, the desired sigual is subject to multipath propagation. and performance
of MIVDR approach degrades severely [51.7%]. Au optimum beammforming procedure has been sug-
gested in (6] to overcome the coherence problem by using a linear array of elements with identical
divectional characteristics.

Weare therefore looking for a method that can overcome all these problems. In the next section,
we preseut an approach that accomplishies this by combining cumulant-based blind estimation and
MVDR beamforming,

3.2 Cumulant-Based Optimum Beamforming

[u the previons section. we disenssed the problem of optimum beamforming and concluded that it
I> ot possible to recover a desired signal in the presence of multiple interferers. unknown sensor
noise covariance. muadtipath propagation and withont any information about array manifoid. In
this section. we propose a method to overcome these problems. We propose a two-step procedure:
higher-order-statisties for blind estimation of the sonrce steering vector. followed by MVDR beam-
foring, based on second-order statistics of received signals and steering vector estimate provided
by the fiest step.

3.2.1 Estumation of desired signal steering vector

In s section. we employ cumulants of received signals. to estimate the steering vector of the
destred signal np to a constant factor. Third-order cumulants are blind to signals with symmetric
probability density funetion. On the other hand. most signais in communication environments have
svinmetric density fnetions, which motivates the use of fourth-order camulants?. First. we define

the fourth-order zero-lay cunulant operator of complex processes Ly (8. (). (). .I'A;(f)}. as

e {.I I(/L.I‘_»(/}. r '_(/‘j..l“l/)} A;) a { I'I(/).I'_»(’)J’;;(’}.l'l(f)} - F {ll(’)l_i(')} I {lg(t}l;(f)}

E (e d ) E ety = F ooy £ st (0) (1)
Nextoconsider the vector € = ey oo il defined as
o 8 rum{r',{ll.l':’(/).I‘{’(’)-"[(’)} =120, . (12)

A~ sneeested in [ 131 there are varions wavs of defining fonrth-order statisties of complex random
5 H B =

processes. We follow the approach presented in (S in (12). Since interference signals are indepen-

dent of the desired signal and they are Gaussian with zero fonrth-order camnlants. we can express

A estunation peecedinre bosed onthared order stitisties is presented in{j9).




Croan

er = cwm {ay(B)sat 0.y 00 a (BT (. w8)sa(0) ) (13)

Using, properties of cumulants. we obtain
= il 02 H /) - P’ 4
cr=da (07 ay (By) g ail8y) (14)

where 5, denotes the zoroth lag of the fourth-order cumulant of the desired signal. Defining
o= Ja(84)]* nf’(ﬁ,/) .4 we have the followineg expression for the M xl1 vector ¢:

c= 1 alf,) (15)

Observe that the vector cis a replica of the saering voctor of the desived signal up to a scale factor.
We show in the next section how this information can be used to recover the desired signal.

3.2.2 Interference Rejection

With the knowledee of the steeriug vector ol the desired signal. interference rejection is possible
n-ing the following minimmm-variance distortionless response formulation: find the weight vector
w that minimizes the power. w!/ R w. at the ontput of the beamformer subject to the constraint
w!l ¢ = 1. where ¢ is obtained via the cumnlant-hased estimation procedure described in Sub-
section 3.2.1. The solution to this optimization problem is well-known [R]. and can be expressed
da=

w .. =R e (16)

where the constant 4, = (¢! R°1T )7 Vs present in order to maintain the linear constraint.

Die to the constraint wif

¢ = 1. the power minimization procedure does not cancel the desired
sienal. but rejects all interference components and sensor noise in the best possible manner. Note
that this is accomplished without knowledee of covariance structure of interference signals. sensor
noise or artay manitold. e the sequel. we refer to the processor in (16) as CUM,;. The proof
that this cinmadant based beamformer is identical to the maximum SINR processor is provided in

Section 3.1 where the eeneral multipath case is treated,

3.3 Robust Beamforming

L this section. we first propose an approach that utilizes the received data in the estimation of
the sonree steering vector o more efficient manner. We then suggest a method that uses both
cutntlants and covariance information under some seenarios. Finallv. we emplov a robust method
to connbat the effects of estimation errors.

3.3.1 Efficient Utilization of Array Data

fn the previous section. we presented o method of blind estimation of the Jdesired source steering
vector Trom the received data: however, the proposed approach is rather ineflicient in the sense that
oulyv the first sensor i~ taken ws reference. For examplesif the connection from this element to the
processor is brokew. then the extimation objective can not be aceomplished. Similarly. due to poor
recetvine circuitey following this avray element | the reference signal may be verv noisy. degrading
the quality of the estimate. We i overcome these difficulties by using, multiple reference elements.
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Define the matrix C with the (k. Dth element,
Cor 2 cum{re(0). () H (O ()} where k0= 1.... M. (17)

With true statisties, the cross-cumulant watrix C will have rank 1, since all its columns are scaled
replicas of the desired source steering vector; however, with sample statistics this condition never
holds. The left singular vector of C with the largest singular value can be used as the estimate of
the desired source steering vector removing the effects of noise. In this way, we utilize array data
more efficiently?. The beamformer that employs the steering vector estimate obtained in the way
described above is referred to as the CUM, beamformer in vhe sequel.

In addition. the Total Least Squares algorithmm, that takes the errors in both the received data
covariance matrix estimate and the steering vector estimate into account, is a better choice for
computing the optimum weight vector. as suggested in 78], but it is computationally expensive.
I extra computations are feasible. we suggest the use of the Constrained Total Least Squares
algorithm [1]. for even better numerical results.

3.3.2 Covariance-Cumulant (C*) Approach

In sowe array processing applications, sensor noise covariance structure has a definite structure
enabling a whitening operation on the received data. The principal eigenvectors of the covariance
matrix of this processed data reveal the subspace spanned by the steering vectors of directional
signals dluminating the array [5%]. Henceo the steering vector estimate obtained by the cumulant-
based approach can be nuproved by projecting this estimate oun the subspace spanned by the
principal eigenvectors of the covariance matrix. This improved estimate can then be used in the
beawnforming procedure of Section 3.2.2. The motivation behind this approach is that covariance
estiinates exhibit less variance than cumulant estimates. but in the covariance domain we can not
wentify the source steering, vector if there are multiple sources. This procedure yields an estimate of
tHee steering vector from covariance-matrix information by employing the cumulant-based estimate
as side information. .\ mathematical deseription of this approach is presented below:

I From the received da ac estimate the covariance matrix R and the desired signal steering
vector © by the cumulant-based procedure.

2. Perform an cigendecomposition of the sample covariauce matrix. to reveal the signal and
noise stithapaces: the cigenvectors of R with the repeated minimum eigenvalue span the noise

subspace Ox)owhile the rest span the sigual subspace.

4. Nssume the signal subspace is (J 4+ 1) dimensional. Then. the basis vectors for the signal
subspace. obtained from the eigendecomposition procedure. can be sorted in an Mx(J + 1)
matrix ECwith the colimmn space identical to the signal subspace.

Lo Project the cimmtant-based steering veetor estimate ¢, on the signal subspace to obtain an

cnproved estimate ¢ as

tareg o

-H
CIHAI' = ESEs c
S0 Carmpute the weights tor the beamtormer, as
-1
w’l!“/' = R CII,I,‘

T e thod that wthizes the array data even more efticiently is presented in[19].
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3.3.3 Robustness Constraint

Any estimation procedure is inevitably subject to errors. MVDR beamforming is extremely sensitive
to mismatch [11-12.14.16,29,70,76], especially in high SNR conditions and in arrays with large
nmber of elements. A variety of constraints have been summarized in [68] assuming perfect
knowledge of element characteristics and locations; however, in our case these methods are not
applicable since there is no available information about the array manifold to design effective
constraints.

Errors in the steering vector estimate result in signal cancellation. This mismatch condition,
arising from nou-perfect estimation. can be viewed as the problem of optimum beamforming with
an array of sensors at slightly perturbed locations. In [15], a method that constrains the white
noise gain of the processor is proposed for the solution of the latter problem. In this section, we
use the same approach to alleviate the effects of estimation errors in cumulant-based optimum
heamforming,.

In order to understand the mismatch problem and find a way to alleviate its effects, we need
to analyze the problem analvtically. Cousider the power response of a beamformer with a weight
vector w, as a function of DOA 6. defined as

Po) 2 jwHa(g))? (18)

with a(#) denoting the steering vector for an arrival from 8. The derivative, dP(8)/96, can be
expressed. as

DPY) Moy

: T 2Re{ w'a(8) | Z w5 @

=1

Aoy 1y (19)

Now consider the following scenario: we have an MVDR processor looking at 8,. which is the
expected DOA for the desired signal. Instead. the source illuminates the array from 8y which is
very close but not equal to f,. In this case. the heamformer treats the desired signal as interference
and nuils it however. due to the distortionless response constraint for 6,. and since the angles are
very close. the derivative 9 P(8)/960 must be large in magnitude for § between 64 and 8,. From
the derivative expression (19). it is clear that this is possible only if the norm of the weight vector
increases. since the inner product. w”a(8). and. the derivatives. {5 al’(6V}}M | are bounded. In
this situation. the constraint is maintained by increasing the angle between the weight vector and
the look-direction steering vector. This phenomena was exploited in [77]. for tuning the beamformer
to acquire a weak desired signal in the presence of strong interference.

Note that the white-noise amplification factor for any processor with a weight vector w is wHw:
lience, the nulling phenomena can be prevented if the white noise level at the processor is sufficiently
high so that output power minimization criterion limits the increase in the norm of w. This can be
achieved by perturbing the covariance matrix estimate of array measurements by a scaled identity
matvix as.

R,=R+cl (20)

where « s a non-negative parameter which adjusts the strength of perturbation. Alternatively. it
i~ possible to coia terin virtual SNR.OSNR, L defined as

: : +a;
SNR, = SNR = 101ogy, (%) (21)
a

H
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We theu deterutine the weight vector as.,

W = R"a((i,) (22)

P

A recent method presented in [15] performs this procedure in an adaptive fashion by a simple
scaling of the weight vector. Tn our case, we do not have source DOA information, but we do have
an estitate of the steering vector. It is therefore possible to use this estimate in place of a(8,) in
(22) to tormulate the cumulant-based processor with limited signal nulling property.

3.4 Multipath Phenomena

Eigendecomposition-based high-resolution methods [4.17,26-27,36.38,56.60-61,69,71] have proven
to be effective means of obtaining bearing estimates of far-field narrowband sources from noisy
weasurements. The performance of these algorithms is severely degraded when coherence is present.
Several methods have been proposed to solve the coherent signals problem with restrictions on
array geometry 8- 19.61-62.66.7 1.75]: however. with lack of knowledge of array manifold it is not
possible to solve the coherence problem.  MVDR beamforming also fails to perform optimally,
when interference signals are correlated with the desired signal [51.78]. In some scenarios, even
the conventional beamtormer outperforms the MV DR approach due to signal cancellation in the
MV DR beamformer.

In Section 3.2, we showed that the cumulant-based beamformer is not affected by the presence
of coherence among interfering Gaussian signals as long as they are not correlated with the desired
stgnal. The same is not possible for high-resolution DOA estimation methods; but. the MVDR
beamtormer may perform equally well il the desived signal steering vector is known and a satisfactory
estimate of Rois available. Tn this section. we show that the cumulant-based approach is not affected
by the presence of multipatle propagation of the desired signal. In addition, we show that the
cunulant-bascd proccssor turns out to be the marimal-ratio-combincr [5) that mazimizcs the SINR.

With the presence of multipath propagation or smart jamming. our signal model in (1) changes

o
L J
) = A0 Y a8+ Y ak(8) 4, + (1) (23)
(=1 a=1
or i vector form
mn
N2 .
ri!) = alty ). a(fy,). - a(by,) : d(t) + Aji(i) + n(t) (24)
L
where the set of scalavs oy ..o n ) constitute the multipath coeflicients for an L-ray scenario.
Uhe et of vectors. { a(#; ). a(8; ). ... a(#,;,) } are the corresponding steering vectors of the
[ -rav model. Lettine
m
A h
b = a(({tlL a(Hvl_» )~ a(ol{[) : = AD ,] (25)
N
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we can reduce the signal model for multipath phenomena to the single-ray propagation model of
Section 3.1.1.
r(t) = bd(t)+ Ari(t) + n(2) (26)

because we can view the vector b as a generalized steering vector for a single desired signal although
it may not be a vector in the array manifold. Therefore, following our work in Section 3.2, cumulant-
based blind estimation procedure will vield

c=034b (27)

where 3, = |by]? b4 444, in which b; is the first component of b. Incorporating (27) into the
constrained power minimization procedure, we obtain the following weight vector,

Weum = /35 R_l ¢ = ﬂ4d5 R_l b (28)

where 35 = {( HR el

Next, we find an alternate expression for we,,. Recall that the optimization problem which
results in Wey,, is: minimize w/Rw subject to wle =1, 0r by (27), wHb = 1/584. We can express
the vutput power in the following way by using (9) and (26),

wHRw = o2 |wl b|? + wiR,w (29)

but. due to the constraint wHb = 1/4,. the first term in the above expression is a constant.
Therefore, the original optimization problem can be translated into : minimize wfR,w, subject
to wHe = 1 or equivalently. w#b = 1/:3,. The solution to this problem is

Weum = dﬁ R_l c (30)

u
where 35 = (¢ R™! ¢)='. Of course. this solution can also be expressed in terms of b, as
Wem = J7RJ'D (31)

where - = Jd4dg.

Note that althougl (30) and (31) are alternate expressions for w .. they are not the way to
actually compute w_,,. since R, is not available in general.

Next. we determine the weight vector that yields the maximum SINR. SINR can be expressed
as a function of the weight vector of the beamformer, as

2wabHW

SINR(w) = ay m (32)
Defining. v = R.l,/Z w so that w = R,Tl/)' V. we cah reexpress {32), as
’ | vH R/?p 2
SINR (w) = SINR( R;"* v) = of—F— (33)
vH v
Applving the Schwarz inequality [30] to (33). we find that
SINR(w)= SINR( R V2 v) < a2||R;V?b | =02bfR]'b (34)
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where equality holds if and only if

v=u3s R;V% b (35)

in which Jg is a non-zero constant. Consequently, the optimum weight vector wsing, which yields
the maximum SINR. can be determined from w = R;l/zv and (35), as

wsing = 3s R;' b (36)

Based on this derivation, some comments are in order. It is clear, by comparing (31) and (36),
that the cumulant-based beamformer does indeed yield the maximum possible SINR, since wy,,
is just a scaled version of wsiyr. This observation proves that the cumulant-based beamformer is
optimal. In addition, w_.,, can be computed from the received data, whereas wsiNg, as imple-
mented in (36), requires knowledge of R, which can not be determined from the received data in
the presence of the desired signal. Finally, note that robust approaches presented in Section 3.3
are directly applicable in the presence of multipath.

3.5 Adaptive Processing

In real-world applications, adaptive beamforming is an important requirement, especially when the
desired signal source is in relative motion with respect to the array. In this section, we address this
problem by providing an “estimate and plug™ type of adaptive algorithm for the CUM; method.

The beamforming procedure (16) requires the inverse of the sample covariance matrix to com-
pute the weights. We can estimate the covariance matrix recursively, as

R = (1~ a1)Reoy + aqr(t)rf (1) (37)
Since we need to propagate the inverse of Ry, we use the Sherman-Morrison formula (46], to obtain

L - R r(t)rf (R,
L—ayfl = cH(OR ! r(1)]

R = - ] t=1.2.... (38)

l—(ll

with RJ' = yI where 5 is a large positive number and a; controls the learning rate for second-order
statistics.

To compute the weight vector, we also need the cumulant-based estimate of the source steering
vector ¢. We can estimate it recursivelyv as

G = (1= aélt = 1)+ ag ()2 (m(t) — 2p(2)g(t) = v (8)2(2)) (39)
with the auxilary processes defined as
P = (1 = ag)plt — 1) + aajry(1)]?
g1y = (1 = as)glt = 1) + agrf (1))
e(1) = (1 = ag)o(t = 1) + agri(t)

(1) = (1 = az)a(t = 1) + agry(t)r(t)

The auxiliary processes ave required in order to implement the cross-correlation terms in (11). The
initial valnes for the auxilary processes can be set to zero. Different learning rates are provided
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to emphasize the fact that higher-order statistics require longer periods to acquire the required
information.
We can perform adaptive beamforming by computing the weight vector at each time as

w(t) = R1é(t) (40)

and obtain the array output, as
y(1) = wH ()r(1). (41)

Adaptive versions of CUM; and C* methods will appear in a later publication.

3.6 Simulations

In this section we present various experiments to illustrate the performance of cumulant-based
beainforming. In all of the experiments we employed a uniformly spaced linear array, rather than an
arbitrary geometry. This is done for two reasons: Covariance-bhased techniques are mainly designed
for this type of array structure. e.g.. the spatial smoothing algorithm [48-49,61-62,66,74,75], so that
it will be possible to compare both previous and future work with our current results. In addition,
allowing a sufficient number of multipath rays, it is possible to represent any arbitrary steering
vector by the linear array, since the steering vectors of the uniformly spaced isotronic linear array
exhibit Vandermonde structure, resulting in linearly independent vectors for different DOA’s. In
all batch type of experiments, the record length is 1000 snapshots and the array has 10 isotropic
elements with uniform half-wavelength spacing.

3.6.1 Experiment 1: Desired Signal in White-Noise

In this experiment. we employ the linear array described above for optimum reception of a BPSK
signal. which is expected to arrive from broadside in the presence of temporally and spatially white,
equal power, circularly symmetric sensor noise; however, the desired source illuminates the array
from 5" broadside.

Our first MVDR beamformer. MVDR,. looks to broadside. i.e., a mismatch condition. Our
second MVDR beamformer, MVDR,. uses exact knowledge of DOA of the desired signal. We also
cuiploy the cumulant-based beamformer of Section 3.2, CUM;. and the improved cumulant-based
beamformer CUM, of Section 3.3.1. We investigate the performance of these processors for the
following two elemental SNRK levels: 20 dB for a strong signal and 0 dB for a weak signal. Note
that the white-noise gain of any processor is limited to 10 dB by the number of sensors [15].

The beampattern responses {18). and white-noise gains of these beamformers are presented
in Fig. 9 for SNR=20 dB. All responses are normalized to have a maximum value of 0 dB. For
cotparison purposes. the optimum beamformer response. calculated by using true statistics in (16),
is presented as the dashed curves. Observe that due to the mismatch condition. MVDR; nulls the
desired signal. More interestingly. the MV DR, processor that utilizes the true DOA information
does wot improve the SNR. due to the mismatch arising from the use of a sample-data covariance
matrix. The cumulant-based processors. CUM,; and CUMj, vield excellent performance without
any knowledge of source DOA. It is very important to observe that the performance of cumulant-
based processors arc bettcr than that of the MVDR with exactly known look-direction.

We performed 100 Monte-Carlo runs to investigate the performance in a better way. The results
are given in Table 1.
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Figure 11: Power of cumulant-based beamforming: (a) received signal at the reference ele-
ment at SNR = 0 dB, (b) output of CUM; processor.

From these results, it is clear that cumulant-based processors are superior and the extra compu-
tation involved in CUM; reduces the variations. Note, also, that variations in the MVDR processors
are significantly larger than those of the cumulant-based counterparts. This agrees with the previ-
ous remarks about the sensitivity of MVDR processing to experimental conditions in a high-SNR
environment.

Table 1: Results from 100 Monte-Carlo Runs for Experiment 1

White-Noise Gain (dB)

Processor | SNR=20dB SNR=04B
Mean | Std. | Mean | Std.
MVDR, -38.130 | 1.579 | 0.413 | 0.281

MVDR, 0.179 ) 1.360 | 9.583 | 0.131
UM, 9.954 | 0.015 | 9.058 | 0.359
CUM; 9.990 | 0.003 | 9.959 | 0.014

We performed the same experiment for 0 dB SNR condition. Figure 10 illustrates the beam-
pattern responses and white-noise gains of the processors. Monte-Carlo results are also given in
Table 1. In this low-SNR condition. MVDR results are expected to improve since the mismatch
conditions for the desired signal will be masked by the presence of white noise of comparable power,
as explained in Section 3.3. MVDR, processor does not offer a significant gain due to the persistent
mismatch condition. but MVDR,; vields a near-optimum result, since presence of higher-level noise
masks the mismatch due to the use of a sample-covariance matrix. The performance of CUM,
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Figure 12: Beamforming in the presence of spatially colored noise: (a) Spatial Power Spectral
Density of noise, (b) Beampattern of CUM, processor. The optimum pattern is illustrated
in dashed lines for comparison purposes.

processor is slightly below than that of MVDR, and exhibits more variations. This is due to the
inefficient use of the array data, since a high-level of noise corrupts the cumulant estimates and
with CUM; there are no precautions to combat these errors. As expected, CUM; overcomes this
problem by using SVD. Results in Table 1 indicate that CUM; achieves the best performance with
minimuin variations.

Finally, to demonstrate the power of cumulant-based beamforming, we illustrate the received
signal and the output of CUM,; processor for SNR=0 dB case in Fig. 11. It is clear that CUM; is
capable of sufficient noise rejection for performing correct decisions.

3.6.2 Experiment 2: Spatially Colored Noise and Multipath Propagation

In this experiment, we investigate the performance of the proposed approach in the presence of
spatially colored noise. We employ the linear array of the previous experiment. We assume that the
noise field 1s created by a set of point sources distributed symmetrically about the broadside of the
linear array. As suggested in [67], this source structure is typical when the noise field is spherically
or cvlindrically isotropic. In this case, the noise covariance matrix is symmetric-Toeplitz. In our
experiment, we use the following structure for the covariance matrix of undesired components,

R,(i.j)= 0.8l (42)

The spatial power spectrum of undesired components is illustrated in Fig. 12a. It is clear
that most of the noise leaks into the system from broadside. The desired signal illuminates the
array from broadside. with an SNR of 10 dB. To illustrate the optimum combining property of our
approach. we iinplanted an exact replica of the desired signal illuminating the array from 60°, where
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Table 2: Results from 100 Monte-Carlo Runs for Experiment 2

Processor | SNR, (dB)

Mean Std
cUM, 23.641 | 0.017
CUM, 23.645 | 0.015

nojse power is relatively less when compared to that from broadside. The beampattern of CUM-
processor is given in Fig.12b. For comparison purposes, we present the response of the optimum
beamformer based on exact statistical information, as a dashed curve. The maximum-possible SNR
at the output is 23.689 dB for this scenario. It is clear that the response of CUMj; is almost identical
to that of the optimum beamformer: both processors emphasize the signal illuminating the array
from 60", since the noise contribution is less in this region. We performed 100 Monte-Carlo runs
for this scenario. and the results are presented in Table 2. It is clear that both cumulant-based
processors perform equally well. The reason for this phenomenon is the presence of the multipath
from 60 through a low-noise background that virtually increases the effective SNR, which, in
turn. alleviates the effects of estimation errors. Note that the peak of the beampattern is slightly
shifted from 60", in order to reccive less interference. Similar behavior is observed in covariance-
based direction-of-arrival estimation in the presence of colored noise resulting in biased estimates
of parameters.

3.6.3 Experiment 3: Effects of Robustness Constraint

In this experiment, we illustrate the effects of the robustness constraint of Section 3.3.3, on a CUM,;
processor in the presence of white noise. We employ the same array as in the previous experiments.
We employ CUM; . since this processor uses the data inefficiently. and requires a robust approach. In
our experiment. we consider the situation with SNR=0 dB. Figure 13 illustrates the beampatterns
of CUN, processor for several SNR, values. It is clear from the results that, as the perturbation
increases. the patterns match better since the mismatch due to estimation errors in the steering
vector estimate are masked by the presence of virtual increased level of noise. This method should
be used sparingly in the presence of jammers. because virtually increasing the noise level results in
diverting the capability of the array from nulling the directional interference.

3.6.4 Experiment 4: Multiple Interferers

Iu this experiment. we consider the problem of beamforming in a multipath environment in the
presence of multiple jammers. We employ the same array as in the previous experiments. The
signai of interest originates from a BPSK communication source. and it is expected from broadside;
however, due to multipath effects, multiple delayed and shifted replicas are received. There are two
Jammers, and one is subject to multipath as well. Table 3. summarizes the signal structure.

Note that there are 10 wavefronts illuminating the array and it is not possible to estimate their
DOA’s with any existing high-resolution method: hence. signal-COPY algorithms [58] can not be
wsed even with perfect knowledge of the array manifold.
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Figure 13: Beampattern of CUM, processor for varying virtual SNR: (a) 0 dB, (b) -6 dB,

(c) -10 dB. (d) -20 dB. The optimum pattern is illustrated in dashed lines for comparison

purposes.

Due to presence of coherent wavefronts, second-order statistics are not spatially stationary along
the array: hence, it is not meaningful to define SINR at an array element. Instead, we compute the
SINR at the output of the optimal processor by employing true statistics. The maximum possible
SINR, is found from (34) to be 12.677 dB. From Table 4, we observe that CUM; performs very
well under these severe conditions. Performance of CUM; is effected by strong interferers since this
processor does not utilize all of the available information. Finally, we observe that MVDR with
correct look-direction cancels the desired signal due to coherence. Note that CUM; exhibits less
variations than other processors.

To gain more insight into the operation of the processors, we illustrate the beampatterns for
MVDR and CUM, in Fig. 14. We focus on the region where the wavefronts are received by the array.
It i~ observed that the MV DR processor does not null the jammer from —1°, since it maintains the
look-direction constraint for 0° and trie, to minimize the output power by destructively combining
the coherent wavefronts. On the other hand, CUM, is blind to Gaussian interferers, and, as in
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Table 3: Signal structure for Experiment 4

Source Power (dB) | Multipath Coeff. | DOA
(0.0,-0.5) ~10°
(0.9895,-0.0311) -2°
(1.0,0.0) 0°
BPSK 10 (-0.6472,-0.4702) 6°
(-0.8,0.0) 8°
(0.1414,0.1414) 11°
{0.0462,0.0191) 18°
JAMMER, 10 (1.0,0.0) 26°
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Figure 1+: Beampatterns and array gains of processors: (a) MVDR with correct look direc-
tion. {(b) CUM,. The optimum pattern is illustrated in dashed lines for comparison purposes.

260




Table 4: Results from 100 Monte-Carlo Runs for Experiment 4

Processor | SINR, (dB)
Mean Std

MVDR | -28.424 | 4.405
CcUM, 4.110 | 2.118
CUM, 10.290 | 0.746
C? 11.879 | 0.627

Experiment 2, it estimates the generalized steering vector of the desired signal and combines the
wavefronts to enhance SINR at the output. CUM; puts a null on the jammer from —17, destructively
combines the wavefronts from the first jammer by weight-phasing rather than null-steering, and
reinforces the wavefronts from the desired source.

Finally, we implement the C? beamformer suggested in Section 3.3.2: we first estimate the
steering vector as done for CUM,, but then further project it into the subspace spanned by the
principal eigenvectors of the sample covariance matrix. We use the resultant vector as the estimate
of the desired signal steering vector, and construct an MVDR beamformer based on it. The
perforinance of the resultant processor is demonstrated in Table 4.

We observe that by combining cumulants with covariance information, we obtain the best
results.

3.6.5 Experiment 5: Adaptive Processing

In this section. we demonstrate the results from the adaptive version of CUM; approach as described
in Section 3.5. We employ the 10 element uniform linear array of previous experiments. The initial
pattern of the beamformer is designed to be isotropic, by letting ¢(0) = [1,0, ..., 0]T. Desired signal
illuminates the array from broadside with SNR=10 dB. A jammer with power equal to that of the
desired source is present at 30. Note that there is no nonstationarity involved in this experiment;
our ainmi is to demonstrate the evolution of the beamforming process and indicate the data lengths
required for cumulant and covariance estimation. Tracking properties will be included in our future
work. including comparisons with adaptive versions of CUM, and C? processors.

Figure 15 illustrates the beampattern of the adaptive CUM; processor as time evolves. After
100 snapshots. the beampattern is still close to isotropic. At 300 snapshots, covariance matrix
estimate is improved, indicating the presence of desired signal from broadside. At this time point,
the cumulant-based steering vector estimate has not matured, so it can not prevent the desired
signhal from being cancelled. After 500 snapshots, cumulant estimates get better, and there is a
tendency to cancel the interference rather than the desired signal. Finally, after 700 snapshots the
processor removes the interference by null steering.

3.6.6 Experiment 6: Effects of Data Length

In this section. we employ the linear arrav of Experiment 1, with the same noise conditions, and
vary the data length to observe the behavior of the beamformers CUM,;, CUM,;, MVDR,; and
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Figure 15: Beampattern of the adaptive CUM; processor as a function of time: desired
signal is from broadside and the jammer is from 30° as indicated. (a) t=100, (b) t=300, (c)
t=500. (d) t=700.
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MVDR,. Figure 16 demonstrates the variation of white-noise gain of the processors with data
length. for 0dB and 20dB SNR levels. Each point on the plots is obtained by averaging the results
from 50 Moute-Carlo simulations.

From Fig. 16a it is clear that CUM; outperforms all the processors, including MVDR;, which
utilizes the correct look direction for all data lengths. Furthermore, small sample properties of
(UM, are quite impressive, motivating further research for developing its adaptive version. Low
SNR masks the mismatch in MVDR; due to the use of sample covariance matrix; hence, as can be
seen from Fig. 16a. CUM, is inferior to MVDR,;.

Figures 16b and 16c. indicate the effect of higher SNR on performance. CUM; and CUM,
perform almost identical for all data lengths. Their gain is larger than 9 dB even for less than 50
snapshots. MVDR; can not recover in this experiment since the mismatch results in severe signal
cancellation. We do not include the response of MVDR;, because its performance drifts around
-35 dB.

Thesc results indicate that our approach has very promising small sample behavior that deserves
more researcl. This will be a topic of another paper.

3.7 Conclusions

We Lave presented optimum beamforming algorithms for non-Gaussian signals, which are based
on fourth-order cumnlants of the data received by the array. Our proposed methods do not make
any assumiption about the sensor locations and characteristics, i.e., they are blind beamforming
methods.  Cumulant-based estimation is emploved to identify the steering vector of the signal
of interest and MVDR beamforming using this estimate is used to remove Gaussian interference
components. We have suggested several approaches to combat effects of estimation errors. We have
also mplemented a recursive version of the method to enable real-time beamforming. Simulation
experiments demonstrate the performance of our approaches in a wide variety of situations. It is
nmportant to emphasize that the proposed methods outperform an MVDR beamformer with an
exactly known look-direction.

In our future work. we shall address the problem of optimum beamforming in the presence
of multiple non-Gaussian interferers and design of adaptive algorithms with better convergence
properties,

4 Final Comments

lu this paper. we summarized our recent research results on the applications of cumulants in speech
and array processing. The results are very promising, and encourage further study in these areas.

We acknowledge that especially in speech processing. cumulant applications are still in a very
premature state. Array processing. however. captured more attention. particularly after the excel-
lent work in {9]. On the other hand. array processing has many practical problems, such as unknown
sensor gain/phase factors. array shape calibration. and DOA estimation for coherent sources in col-
ored noise. It is our aim to develop cuimulant-based solutions to those practical problems that still
lack reasonable solutions when only second-order statistics are emploved.

263




)
=
= —
3
-]
= .
§ pu
-——
800 900 1000
Data Length
Data Length
1o SNR = 20 dB - .
9.8 . T .
=3 9.6 .
8 va
3 .
9.2 -
7370() - 7;00 a 500 B (19 o] 700 800 900 1000
(b))
s . SNR = 20 dB
¢ W‘
&= e -
= - —-—
= .5 /__’____4/‘— . . R . . T
~
(43
S 10 . ~
MVIDR2 _
1S ' f P P Gl o 1 i H
O 1 00O 200 300 400 500 S00 700 800 900 1000
te D Data L.ength

Figure 16: Performance of processors with varyving data length: (a) SNR=0 dB, (b) SNR=20
dB.CUM, and CUM,. (¢) SNR=20 dB. MVDR,.

264




References

(1]

(2]

9]

[10]

(1]

12

(13

£}

19

I.J. Abatzoglou, J.M. Mendel and G.A. Harada, “The constrained total least squares technique
and its applications to harmonic superresolution,” IEEFE Trans. Signal Processing , vol.39, no.5,
pp-1070-1087, May 1991.

A. Bendiksen and K. Steiglitz, "Neural Nets for Voiced/Unvoiced Speech Classification,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.521-524, 1990.

A. Benveniste, M. Metivier and P. Priouret, Adaptive Algorithms and Stochastic Approrima-
tions, Springer-Verlag, 1990.

G. Bienvenu and L. Kopp, “Optimality of high resolution array processing using the eigensys-
tem approach.” IEEE Trans. Acoust.. Speech, Signal Processing , vol. ASSP-31, no.5, pp.1235-
1247. October 1933,

D.G. Brenunan, "On the maximum signal-to-noise ratio realizable from several noisy signals,”
Proc. IRE. vol.13. pg.1350. 1955,

Y. Bresler, V.U. Reddy and T. Kailath, “Optimum beamforming for coherent signal and
interferences.” [EEE Trans. Acoust.. Speech, Signal Processing, vol.ASSP-36, no.6, pp.833-
X130 June [9R,

D.R. Brillinger and M. Rosenblatt. “Asymptotic theory of estimates of kth-order spectra,” in
Speetral Analysis of Time Series, B. Harris, ed., New-York: John Wiley & Sons, pp.189-232,
1967,

J. Capon. “High-resolution frequencv-wavenumber spectral analysis,” Proc. of IEEFE, vol.57,
no.%, pp.l40%8- 1418, August 1969.

J.F. Cardoso. "Blind identification of independent components with higher-order statistics,”
Proc. Vail Workshop on Higher-Order Spectral Analysis, pp.157-162, June 1989.

P. Comon. “Seperation of stochastic processes,” Proc. Vail Workshop on Higher-Order Spectral
Analysis, pp. 171 179, June 1989,

R.T. Compton. ~Pointing accuracy and dynamic range in a steered beam adaptive array,”
TEEE Trans. Aerosp. Electron. Syst.. vol.AES-16. pp.280-287, May 1980.

R.T. Compton. “The effect of random steering error vectors in the Applebaum adaptive array,”
TEEE Trans. Acrosp. Electron. Syst.. vol.AES-1%, pp.392-400, September 1982,

R.T. Compton. Adaptive Antcnnas: Concepts and Performance. Prentice-Hall, New-Jersey.
(AR

H. Cox. ~Resolving power and sensitivity to mismatch of optimum a.ray processors.” J. of
Acoust. Soc. Amer. vol.54, no.3, pp. 771 -T85, 1973.

H. Cox, H.M. Zeskind and M. M. Owen. “Robust adaptive beamforming,” IEEFE Trans. Acoust.,
Speceh. Swgnal Processing . vol.ASSP-35. 10.10. pp.1365-1376, October 1987.

265




[t6]

(7]

(23]

[21]

[29]

(30]

{.’H}

H. Cox. LM, Zeskind and M.M. Owen, “Effects of amplitude and phase errors on linear
predictive array processors.” IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-36,
no.l. January 198%.

S. DeGraaf and D. Johnson, ~ Capability of array processing algorithms to estimate source
bearings.” IEFE Trans. Acoust.. Speech, Signal Processing , vol. ASSP-33, no.6, pp.1368-1379,
December 1985,

Dubnowski, R.W. Schafer and L.R. Rabiner , “ Real-time digital hardware pitch detector,”
IEEE Trans. Acoust. , Speech , Signal Process. , vol. ASSP-24, no.1, pp.2-8, February 1976.

M.C. Dogan and J.M. Mendel. *Cumulant-based blind optimum beamforming,” USC-SIPI
Report # 195, Los Angeles, California, January 1992.

M.C. Dogan and J.M. Mendel, “Cumulant-based adaptive analysis of speech signals,” USC-
SIPI Report # 196. Los Angeles. California, January 1992.

. Feldman and L.J. Griffiths. "A constraint projection approach for robust adaptive beam-
forming.” in Proc. IEEE Intl. Conf. Acoust.. Speech, Signal Processing, pp.1381-1384, May
1991 .

J.R. Founollosa. J. Vidal and E. Masgrau . * Adaptive system identification based on higher
order statistics.” in Proe. IEEE Int. Conf. Acoust.. Speech, Signal Processing, pp.3437-3440,
1991,

B. Friedlander. = A signal subspace method for adaptive interference cancellation,” IEEE Trans.
Acoust., Speech, Signal Processing . vol.ASSP-36, no.12, pp.1835-1845, December 1988.

B. Friedlander and B. Porat. = Performance analysis of a null-steering algorithm based on
direction-of-arrival estimation.” IFEFE Trans. Acoust.. Specch. Signal Processing . vol.ASSP-
37, nock ppA6l 166. April 1989,

B. Friedlauder. = \ sensitivity analysis of the MUSIC algorithm.”™ [EEFE Trans. Acoust.. Speech.
Stgnal Processing . volLASSP-3%. n0.10, pp.1740-1751, October 1990.

W. Gabriel. = Spectral analysis and adaptive array superresolution teciniques,” Proc. IFEE,
vol.6R. 110.6. pp.6H4 666, June 1930.

W. Gabriel. “Using spectral estimation techniques in adaptive processing antenna systems.”
LEEE Trans. Antennas and Propagation. vol. AP-34. no.4, pp.291-300. March 1986.

G.B. Giannakis and M. Tsatsanis. "HOS or SOS for parametric modelling,” Proc. IFEE Intl.
Conf. on Neoust.. Spoech, Signal Processing, vol.5, pp.3097 3100, May 1991.

L.C. Godara, “Error analvsis of optimal antenna array processors.” IEEE Trans. Aerosp.
Floctron, Syst.. volLAES-22. July 19%6.

S. Havkin. ed.. Array Procossing: Applications to Radar. Dowden. Hutchinson & Ross. Inc..
19%0),

S, Havkin. ed.. Array Signal Processing. Prentice-Hall. New-Jersey. 1984.

266




[32]

(33]

[34]

[3%]

(39]

[10]

[11]

(2]

S. Haykin, ed., Advances in Spectrum Estimation and Array Processing. Prentice-Hall, New-
Jersey. 1991.

Hi-SpectM: Software package for signal processing with higher-order-spectra, United Signals
and Systems. Culver City, California, 1991.

P. Huber, Robust Statistical Procedures , CBMS - NSF Regional Conference Series in Applied
Mathematics, 1977.

A. Johanson, Gi. Ahlbom and L.H. Zetterberg, “Event detection using recursively updated
lattice filters.”in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp.632-635, 1985.

D. Johnson and S. DeGraaf, * Improving the resolution of bearing in passive sonar arrays
byv eigenvalue analvsis.” IEEE Trans. Acoust., Speech. Signal Processing , vol.ASSP-30, no.4,
pp-63% 647, August 1982,

D.A. krubsack and R.I. Niederjohn. * An autocorrelation pitch detector and voicing decision
with confidence measures developed for noise corrupted speech,” IEEE Trans. Acoust., Speech,
Signal Process. . vol. ASSP-39, no.2. pp. 319-329, February 1991.

R. Kumaresan and D. Tufts. = Estimating the angles of arrival of multiple plane waves,” IEEFE
Trans. Aecrospace and Electronic Systems, vol.AES-19, no.1, pp.134-139, January 1983.

(. Lee . = Robust linear prediction of speech,” IEEFE Trans. Acoust. , Speech . Signal Processing
.vol. ASSP-36 . no.h. pp.642-650. May 1988.

K.Y. Lee. B.Gi. Lee, I. Song and S. Ann, ™ On Bernoulli-Gaussian modelling of speech excitation
source.” in Proc. [EEE Int. Conf. Acoust., Speech, Signal Processing. pp.217-220. 1990.

K.S. Lii and M. Rosenblatt, “Deconvolution and estimation of transfer function phase and
coefficients for non-Gaussian linear processes.” Ann. Statist., vol.10, pp.1195-1208, 1982.

J. Marr. = A selected bibliography on adaptive antenna arrays,” IEEE Trans. Aerosp. Electron.
Syst.. AES-22. n0.6. pp.781- 798, November 1986.

J.ML Mendel. “Tutorial on higher-order statistics (spectra) in signal processing and system
theory: theoretical results and some applications,” in Proc. IEEE. vol.79, no.3, pp.278-305,
March 1991.

R.\. Mouzingo and T.W. Miller. Introduction to Adaptive Arrays. John-Wiley & Sons, Inc.,
FOR0O.

(1. Nikias and M.R. Raghuveer. “Bispectrum estimation: a digital signal processing frame-
work.” Proc. [EEFE. vol.75. no.7. pp.869-8391. July 1987.

J.M. Ortega, Matriz Theory: a second course. Plenum Press. New-York, 1987.

A. Paulraj and T, Kailath. “Eigenstructure methods for direction of arrival estimation in the
presence of unknown noise fields.” IEFFE Trans. Acoust.. Speech, Signal Processing, vol. ASSP-
34 no. L, pp. 13 20, February 1986.

267




4]

[19]

[:’)()]

(53]

59)

56

159
[60]

f61]

S. Pei. C.C. Yeh and S.C. Chiu. ~"Modified spatial smoothing for coherent jammer suppression
without signal cancellation.” IFFE Trans. Acoust., Speech, Signal Processing , vol. ASSP-36,
no. 3. ppotl2 A1, March 1988,

U. Pillai and B. Kwon, * Forward/backward spatial smoothing schemes for coherent signal
identification.” [EEFE Trans. Acoust.. Speech, Signal Processing , vol.ASSP-37, no.1, pp.8-15,
January 1989,

S.UL Pillat. Array Signal Processing. Springer-Verlag, New-York. 1939.

B. Porat and B triedlander. “Direction finding algorithms based on high-order statistics,”
TEEE Trans. Acoust.. Speech. Signal Processing . vol.ASSP-39, no.9, pp.2016-2024, September
1991.

S. Prasad. R.T. Willlams. A.Kk. Mahalanabis and L.H. Sibul, ~A transform-based covari-
ance differeucing approach for some classes of parameter estimation problems,” IFEE Trans.
Acoust.. Speceh. Signal Proce ssing. vol.ASSP-36. no.5, pp.631-641, May 1988.

.. Rabiner and R. Schafer. Digital Proccssing of Speech Signals, Prentice-Hall, 1978,

V. Reddv, A Paulraj and T. Kailath. “Performance analysis of the optimum beamformer in
the presence of correlated sources and its behavior under spatial smoothing,” IEFE Trans.
Acoust.. Spceeh. Signal Proccssing . vol.ASSP-35, no.7, pp.927-936. July 1987.

Y. Rockah and P Schultheiss. »Array shape calibration using sources in unknown locations-
part I lar-field sources.” [EEFE Trans. Acoust.. Speech, Signal Processing, vol.ASSP-35, no.3,
Pp286 2990 March 1937,

R. Roy and T. Kailath, "ESPRIT Estimation of signal parameters via rotational invariance
techniques.” [EEE Irans. Acoust., Speech, Signal Processing . vol.ASSP-37, no.7, pp.984-995,
July 1989,

P. Ruiz and J.L. Lacoume. “Extraction of independent sources from correlated soiurces: a
solution based on conmmulants.” Proc. Vaid Workshop on Higher-Order Spectral Analysis, pp.146-
151 June 19%9.

R.O. Schmidt. ~NMultiple emitter location and signal parameter estimation,” [EEE Trans.
Antennas and Propagation. vol.AP-34. no.3. pp.276-280. March 1936.

R.O. Schimidt and R.E. Franks. “Multiple source DF signal processing: an experimental sys-
tem.” TEEE Trans. Antennas and Propagation. vol.AP-34, no.3. pp.281-290, March 1986.

R.\. Scholtz, “How do vou define bandwidth.” Procecdings of the International Telemetering
Conforenec Los Angeles, Califoraia, pp.281 283, October 1972,

I'. Shan and T, Kailath, ~Adaptive beamforming for coherent signals and interference.” IEEF
rans, Yeoust.. Spocch. Signal Processing . vol.ASSP-33. no.3. pp.527-536. June 1985.

20 b Shan. M. Wax and T, Kailath. “Oun spatial smoothing for direction-of-arrival estimation

of colerent signals™ TEEE Trans. Acoust.. Speech. Signal Processing . vol.ASSP-33, no.4.
Pp-X0G X1 Augnst 1985,

268




[63] D. Slepian. “On bandwidth.” Proc. of IEEF, vol.64, pp. 292-300, 1976.

(64" Special Issue on Adaptive Antenna Systems. [EEE Antennas Propagat., vol.AP-34, March
19R6.

AL Swani and J M. Mendel, ~ Adaptive system identification using cumulants,” in Proc. IEEE
Int. Conf. Acoust.. Speech, Signal Processing, pp.2243-2251, 1983,

67

Y. Su. . Shan aud B. Widrow. = Parallel spatial processing: a cure for signal cancellation
in adaptive arravs.” IEEE Trans. Antennas and Propagation, vol.AP-34, no.3, pp.347-355,
March 19%6.

[67] R.J. Talham. ~Noise correlation functions for unisotropic noise fields,” J. Acoust. Soc. Amer.,
vol.69. pp.213- 215, January 19R1.

[65] B. Van Veen and K. Bucklev, "Beamforming: a versatile approach to spatial filtering,” IEEFFE
ASSP Magazine, pp.d 24, April 1931,

[69] M. Viberg and B. Ottersten. “Sensor array processing based ¢a subspace fitting,” IEFE Trans.
Acoust.. Specel. Signal Processing. vol.ASSP-39. no.5%. pp.1110-1121, May 1991.

[FO] AL Vurall ~Effects of perturbations on the performance of optimuin/adaptive arrays,” IFEE
Trans. Xcrosp. Flectron, Syst.. vol L AES-15. pp.76-87. Tanuary 1979.

[T1] \V.Jo Weisse ALS. Willsky and B.C Levy. “EFigenstructure approach for array processing with
unknown intensity coetlicients” IEEE Trans. Acoust.. Speech. Signal Processing , vol.ASSP-36,
o 10 ppa 1613 1617, October 193X,

[72] AL Weiss and B Friedizuder. " Array shape calibration using sources in unknown locations-a
maximun-likelihood approach.” [EFE Trans. Acoust., Speech. Signal Processing . vol.ASSP-
37,00 120 pp 195X 1966, December [9RY.

[73] B. Wells . = Voiced/Unvoiced decision based on the bispectrum.” in Proc. IFEE Int. Conf.
Acoust.. Specch. Sigual Processing . pp. 1H89--1592. 1935,

(T4 B Widrow. K.M. Duvall. R.P. Gooch and *V.C. Newman. “Signal cancellation phenomena
i adaptive autennas: causes  nd cures.” [EEEF Trans. Antennas and Propagation. vol.AP-30.
no3. ppaored 13 May 1932,

[75] R Williams. S. Prasad. A K. Mahalanabis and L.H. Sibul. “An improved spatial smoothing
techuique for bearing estimatiou in a multipath enviromment.” IEEE Trans. Acoust.. Speech.
Signal Processing . vol.LASSP-36. no. 1 pp.25- 432, April 1988,

[T6] CL. Zahue ~Effects of errors in the direction of incidence on the performance of an adaptive
atray.” Proco TEEE vol.600 pp 1005 1009, August 1972,

[77] L. Zalon. ~Application of adaptive arravs to suppress strong jamiuers in the presence of
. weak signals” TEEE Trans. Acrosp. Fleetron. Syst.. vol. AES-3. pp.260-271, 1973.

7S] AL Zoltowskis ~On the performance analyvsis of the MVDR beamformer in the presence of
correlated interference” TEEE Trans. Acoust.. Speech. Signal Processing . vol.ASSP-36. no.6.
PP 91T dnne 19NN

269




Moments and Wavelets in
Signal Estimation

Edward J. Wegman!
Center for Computational Statistics
George Mason University

Hung T. Le?

International Business Machines

1This research was supported by the Office of Naval Research under Grant N00014-92-J-1303,
the Ariny Research Office under Contract DAAL03-91-G-0039, and the National Science Foundation
under Grant DMS9002237. This paper was presented as an invited talk at the ONR-sponsored
workshop on Moments and Signal Processing held in Monterey, CA on March 30 and 31, 1992.
Wegman used to be an important Navy employee as Division Director of the Mathematical Sciences

Division at ONR, but now he is only a quasi-important as Theory and Methods Editor of JASA. After
December 31, 1993, he will resumie being unimportant.

2Dr. Le is an Adjunct Assistant Professor of Operations Research and applied Statistics at

George Mason University. This work is performed in part while he was on educational leave of absence
from IBM.

270




Moments and Wavelets in
Signal Estimation

Abstract: The problem of generalized nonparametric function estimation has
received considerable attention over the last two decades. Most of the approaches have
assumed smoothness of the function to be estimated generally in the form of continuity
of higher order derivatives and/or bounded variation and have used convolution kernels
or splines as the estimation devices. Generally focus has been on density estimation or
nonparametric regression. The spline and kernel-based methods may be inappropriate if
either smoothness assumptions are violated or if additional side conditions are present.
Wegman (1984) introduced a general framework for optimal nonparametric function
estimation which applies to a much wider class of problems than simply density
estimation or nonparametric regression. In this framework, a class of admissible
estimators is regarded as a compact, convex subset of a Banach function space and a
convex objective functional is to be optimized over this set. Recent work on wavelets
suggests a powerful method for constructing orthonormal bases to span the set of
admissible estimators. Moreover, older work on frames has re-emerged to some level of
prominence because of the work on wavelets. The optimal estimates can be computed
as weighted linear combinations of the orthonormal bases. The weight coefficients are
computed as moments of the basis functions. We illustrate these methods with some
numerical examples.
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Moments and Wavelets in
Signal Estimation

1. Introduction.

The method of moments is a time-honored traditional technique in statistical
inference while wavelet analysis has recently burst upon the mathematical scene to
capture the enthusiasm and imagination of many applied mathematicians and engineers
both because of their important applications in signal and image processing and other
engineering applications and also because of the inherent elegance of the techniques. In
this paper we bring these tools together to illustrate their application to transient signal
processing. Wavelets are described in detail in a number of locations. Much of the
fundamental work was done by Daubechies and is reported in Daubechies, Grossmann
and Meyer (1986) and Daubechies (1938). Heil and Walnut (1989) provide a survey
from a mathematical perspective while Rioul and Vetterli (1991) provide a survey from
a more engineering perspective. The new book by Chui (1992) is an excellent integrated
treatment which I believe is more mathematically sophisticated than the author
supposes. In spite of its title as an introduction, it requires somewhat more

mathematical depth and maturity and is best regarded as more of a monograph.

This present paper describes the basic wavelet theory in the context of the
general statistical problem of nonparametric function estimation. It will be show that
traditional moment based techniques have an interesting and useful connection to
modern nonparametric functional inference for signal processing via wavelets. Wegman
(1984) describes a basic frainework for optimal nonparametric function estimation. This
framework captures the optimal estimation of a wide variety of practical function
estimation problems in a common theoretical construct. Wegman (1984), however, only
discusses the existence of such optimal estimators. In the present paper, we are
interested in combining this optimality framework with more general wavelet
algorithms as computational devices for general optimal nonparametric function
estimation. A new application of optimal nonparametric function estimation is found in

Le and Wegman (1991). A second application will be discussed in this paper.

In section 2, we discuss the optimal nonparametric function estimation
framework. In section 3, we turn to a discussion of the general function analytic
framework which leads to bases and frames. Section 4 introduces the notion of a

wavelet basis and demonstrates the connection with Fourier series and Parseval’s
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Theorem. In section 5 we turn to transient signal estimation, develop an optimization
criterion and illustrate the computation of a transient signal estimator.

2. Optimal Nonparametric Function Estimation.

Consider a general function, f(x), to be estimated based on some sampled data,
say Xy, X9,...,Xp. This is, in fact, the most elementary estimation problem in statistical
inference. Often the function, f, in question is the probability distribution function or
the probability density function and most frequently the approach taken is to place the
function within a parametric family indexed by some parameter, say 8. Rather than
estimate f directly, the parameter 4 is estimated with f, then being estimated by fa = fa.
Under a variety of circumstances, it is much more desirable to take a nonparametric
approach so as to avoid problems associated with misspecification of parametric family.
This is particularly the case when data is relatively plentiful and the information

captured by the parametric model is not needed for statistical efficiency.

Probability density estimation and nonparametric, nonlinear regression are
probably the two most widely studied nonparametric function estimation problems.
However, other problems of interest which immediately come to mind are spectral
density estimation, transfer function estimation, impulse response function estimation,
all in the time series setting, and failure rate function estimation and suirvival function
estimation in the reliability/biometry setting. While it may be the case that we simply
may want an unconstrained estimate of the function, it is more often the case that we
wish to impose one or more constraints, for example, positivity, smoothness, isotonicity,
convexity, transicnce and fixed discontinuities to name a few appropriate constraints.
By far, the most common assumption is smoothness and frequently the estimation is via
a kernel or convolution smoother. We would like to formulate an optiraal

nonparametric framework.

We formulate the optimization problem as follows. Let 3 be a Hilbert space of
functions over R, the real numbers (or C, the complex numbers). For purposes of the
present paper, we assume R rather than C unless otherwise specified. The techniques we
outline here are not limited to a discussion of L(R) although quite often we do take ¥

to be Ly. In this case, we take

<f 8> = [f(x) glx) du(x),

where p is Lebesgue measure. We emphasize that this is not absolutely required. As
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usual ||f|| =/<I, T>. A functiona! L:3-R is linear if
L(of + 8g) = alL(f) + BL(g), for every f, g €36 and a, F€R.
L is convezon S C ¥ if
2(tf+(1-t)g) <tL(f) + (1 -t)L(g), forevery f, g €S with0 <t <1.

L is concave if the inequality is reversed. L is strictly convez (concave) on S ii the

inequality is strict. L is uniformly convez on S if
tL(f) +(1-t)L(g) - Lt + (1 - t)g) 2 ct(1-t) | f-g |2

forevery f, g eSand 0<t<1.

We wish to use £ as the general objective functional in our optimization
framework. For example, if we are concerned with likelihood, we may consider the log
likelihood, .

L(f) = Y log f(x;), x; are a random sample from f.
i=1

If we have censored samples we may wish to consider

n

L) =Y 6;log g(x) + Y (1-6;) log G(x,),

i=1 1i=1

x; again a random sample, é; a censoring random variable, G=1-G, and

z

G(x):J g(u) du. This is the censored log likelihood. Another example is the
-0

penalized least squares. In this case
n b
2(g)= 3 (v;=8(x))" +3 | (Lg(w)’ du.
1= a

Here L is a differential operator and the solution of this optimization problem over
appropriate spaces is called a penalized smoothing L-spline. If L = D2 then the solution
is the familiar cubic spline.

The basic idea is to construct S C 3 where S is the collection of functions, g,

274




which satisfy our desired constraints such as smoothness or isotonicity. We wish tc
optimize £(g) over S. The optimized estimator will be an element of S and hence will
inherit whatever properties we choose for S. The estimator will optimize L(g) and
hence will be chosen according to whatever optimization criterion appeals to the
investigator. In this sense we can construct designer estimators, i.e. estimators that are

designed by the investigator to suit the specifics of the problem at hand.

Of course, in a wide variety of rather disparate contexts, many of these
estimators are already known. However, they may be proven to exist in a general

framework according to the following theorem.

Theorem 2.1:

Consider the following optimization problem:
Minimize (maximize) £(f) subject to fe S ¢ 6.
Then
a. If 3 is finite dimensional, £ is continuous and convex (concave) and S is closed
and bounded, then there exists at least one solution.
b. If 3 is infinite dimensional, £ is continuous and convex (concave) and S is
closed, bounded and convex, then there exists at least one solution.
c. If £ in a. or b. is strictly convex (concave), the solution is unique.
d. If 3 is infinite dimensional, £ is continuous and uniformly convex (concave)

and S is closed and convex, then there exists a unique solution.

Proof: A full proof is given in Wegman (1984). For completeness, we outline the basic
elements here. a. For the finite dimensional case, S closed and bounded implies that S
is compact. Choose f, €S such that £(f,) converges to inf{L(f): f€S}. Because of
compactness, there is a convergent subsequence f,,’c having a limit, say f,. By
continuity of £

2(f,) =kl-i..rgo£(f"k) =inf{L(f): f€S}.

f, is the required optimizer. For part b., we have the same basic idea except that S
closed, bounded and convex implies that S is weakly compact. We use the weak
continuity of £. Uniqueness follows by supposing both f, and f,, are both minimizers.
Then

L(tf, + (1 - t)f,,) <tL(f,) + (1 - t)L(f,,) = inf{L(f): f € S}.
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This implies that neither f, nor f,, is a minimizer which is a contradiction. 0O

This theorem gives us unified fra nework for the construction of optimal
ponparametric function estimators. It does not, however, give us a definitive method
for construction of nonparametric function estimators. We give a constructive
framework in the next several sections. In closing this section we refer the reader to
Wegman (1984) for the complete proof of Theorem 2.1 and many more examples of the

use of this result.

3. Bases and Subspaces.

In this section, we discuss the basic theory of spanning bases and their
application to function estimation. Consider f, g € 3. f is said to be orthogonal to g
written f L gif <f, g> =0. An element f is normalif ||f|| =1. A family of elements,
say {ey: A€ A} is orthonormal if each element is normal and if for any pair e;, e, in the
family, e, L ey. A family {ey: A€ A} is complete in S C J6 if the only element in S which
is orthogonal to every e), A€ A is 0. A basis or base of S is a complete orthonormal
family in S. A Hilbert space has a countable basis if and only if it is separable, i.e. if
and only if it has a countable dense subset. Ordinary L, spaces are separable. We are
now in a position to state the basic result characterizing bases of Hilbert spaces or
subspaces. We write span({e,}) to be the minimal subspace containing {e,}. This is
the space generated by the elements {e,}.

Theorem 3.1:

Let 36 be a separable Hilbert space. If {e;}7°_ | is an orthonormal family in J6,

then the following are equivalent.

a. {e,J§°= | is a basis for .

b. If fe 3 and f L e for every k, then f=0.

c. IffeX, then f= f <f, e, >e,. (orthogonal series expansion)

d. If f, geJ6, then <f=,1g> = of <fep> <g, e,>.

e. ffek, f)?= § | <f, e’;c:>1 12. (Parseval’s Theorem)
Proof: £=

a => b: Trivial by definition.

b =>c We claim 3 =span({e.}). If not there is f#0, fe¥ such that
f¢span({e,}). This implies that f 1 e, for every k. But f L e, for every k and f#0is a
contradiction to the {e,} being a basis. Let 3, = span(e;). Then 3 = span( kg}%k) =
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¥ %, This implies that for f € 36,
(31) f= § t €
k=1
Substituting (3.1) in the expression for the inner product yields
<f,e.> = L€ €:> =3 Cp<e, e:>.
e <Xk Ckep € élk b €;

By the orthonormal property, <e,, e;> =1, if k =j and =0, otherwise. It follows that
<f,e;> =c;. Thus

(3.2) f:kf <f, e, >e
=1

c=>d: <f,g> = <f, f: <g,ek>ek>=k§ <g e > <fe>.
k=1 =1
d =>e: Let f=g in part d.

e=>a: If fe and { Leg for every k implies <f, e, > =0 for every k. This in
turn implies that ||f|| =0. Thus f=0. This finally implies {e.}, is a basis. O

Thus given any basis {e.},, we can exactly write f= f c; ¢, aud we can
estimate f by 3° €, e,. Thus a computational algorithm for the optxmal nonparametric
function estimator can be based on this result from Theorem 3.1.c. However, this does
not yet take into account the “design” set, S. In order to more carefully study the
structure of S we consider the following result. In the following discussion let S ¢X.
Then define S+ = {fe%: fLS).

Theorem 3.2:

If SC ¥ is a subset of J¢, then
a. S1 is a subspace of % and SNS < ¢ {0}
b. S¢St + =span(S)
c. Sis asubspace if and only if S=S+ 4.

Proof: S+ is a linear manifold. To see this if fi f2esl, then for every geS,

<a)f) +agly, g> =a;<f}, g> +ag<fy, g> =a;-0+a9-0=0. Thus a\f; +a,fpeS+.
This implies S+ is a linear manifold which is sufficient to show that S+ is a subspace
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provided we can show S is closed. To see this if f € closure (S 1), then there exists
{f.} €S such that f=lim f, and for every geS, <f,, g> =0. But <f, g> =
lim <fy, g> =lim0=0. This implies f LS which in turn implies feS+. Part b
follows from part a by replacing S by S L. Partcis straightforward application of the

two previous parts. 0O

Suppose now that we have a basis for 3, call it {e }F_ 1 This basis obviously
also spans subset S of 3 and hence any of our “designer” functions in S can be written
in terms of the basis, {e,}?°-,. The unnecessary basis elements will simply have
coefficients of 0. In a sense, however, this basis is too rich and in a noisy estimation
setting superfluous basis elements will only contribute to estimating noise. = As part of
our “designer” set, S, philosophy, we would like to have a minimal basis set for S.
Theorem 3.2 gives us a test for this condition. Consider a basis {e.}3°-, for 3. Form
Bs which is to be a basis for S. We define Bg by the following routine. If there is a
geS such that <g, e, > #0, then let e,eBs. If on the other hand there is a
geS L such that <g, e, > #0, then let e, € B.,. Unfortunately, it may not be that
BsnB_ | =0. But this algorithm yields {e,} =BsUB_ .. Moreover S Cspan(By).
Thus we may be able to eliminate unnecessary basis elements. We may also be able to
re-normalize the basis elements using a Gram-Schmidt orthogonalization procedure to
make B¢ L B¢ . Usually if we know the properties of the set, S, we desire and the
nature of the basis set {e.}, it will be straightforward to construct a test function, g,
with which to construct the basis set, Bs. If S is a subspace, then S = span(Bg). In any

case we can carry out our estimation by

(3.3) f: Z Ek‘ek.

ekGB:

In a completely noiseless setting (3.1) is really an equality in norm, i.e.
IHf - 3 gcpepll =0. If 36 is Lo(u), with p Lebesgue measure, then (3.1) is really

(3.4) f= % ,cier. almost everywhere u with ¢, = <f, e, >.
This choice of ¢, is a minimum norm choice. However, in a noisy setting, i.e. where we

do not know f exactly, we cannot compute c, directly. However, we may be able to

estimate ¢, by standard inference techniques.
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Example 3.1. Norm Estimate. The minimum norm estimate of c is the choice which
minimizes ||f- ¥ ciepll, ie. ¢ = <f, e, >. In the Ly context,

<fep> = ]f(x) eg(x) du(x).
R
If f is a probability density function, then <f, e, > =E[e,] which can simply be
estimated by n_l}:;‘= le,c(xj), where x j» J=1,..,n is the sample of observations. We
note that the major approach to estimating the weighting coefficients is via a traditional
method of moments.

Example 3.2. General Form of Estimate. In the general context with optimization

functional L we have

(3.5) L(f) = z( zeja <k ek) 2 2({c.))-
€5 ]

Since (3.5) is a function of a countable number of variables, {c;}, we can find the
normal equations and with the appropriate choice of basis, find a solution. For this we
will typically assume L is twice differentiable with respect to all ;. A wide variety of
bases have been studied. These include Laguerre polynomials, Hermite polynomials and
other orthonormal systems. Perhaps the most well-known orthonormal system is the
system of fundamental sinusoids which span Ly(0, 2r). One might reasonable guess
that wavelets form another orthogonal system. We discuss the connection in the next

section.

4. Fourier Analysis and Wavelets.
4.1 Bases for L,(0, 2x).

Let us consider the set of square-integrable functions on (0, 27) which we denote
by Lg(0, 27). Ly(0, 27) is a Hilbert space and a traditional choice of an orthonormal
basis for this space has been e (x) = e'*Z the complex sinusoids. Thus any f in L4(0,27)

has the Fourier representation by Theorem 3.1.c

where the constants c, are the Fourier coefficients defined by
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0

= rf( Je ™ *=dx

Ck—ﬁ- X)e .
0

This pair of equations represent the discrete Fourier transform and the inverse Fourier
transform and is the foundation of harmonic analysis. An interesting feature of this
ikx

complex sinusoids as a base for Ly(0, 27) is that e;(x) =€'** can be generated from the

superpositions of dilations of a single function, e(x) = €. By this we mean that
elc(x) =e(b()9 k=- -1,0,1, -

These are integral dilations in the sense that ke J, the integers. The concept of
dilations of a fixed generating function is central to the formation of wavelet bases as we
shall see shortly.

A well known consequence of Theorem 3.1.e for the complex sinusoid basis is the

Parseval Theorem. For this base, we have

Theorem 4.1: (Parseval’s Theorem):

2T 0Q
(41) LR IR D SN TAL
0 k= —00
Equation (4.1) is known as Parseval’s Theorem in harmonic analysis and states that the

square norm in the frequency domain is equal to the square norm in the time domain.

While the space Lq(0, 27) is an extremely useful one, for general problems in
nonparametric function estimation we are much more interested in Ly(R). We can
think of L,(0, 27) as with functions on the finite support (0, 27) or as periodic functions
on R. In the latter case it is clear that the infinitely periodic functions of Ly(0, 27) and
the square integrable functions of Lo(R) are very different. In the latter case the
function, f(x) € Ly(R), must converge to 0 as x++oo. The generating function e(x) = e'*
clearly does not have that bhehavior and is inappropriate as a basis generating function
for Lo(R}. What is needed is a generating function, e(x), which also has the property
that e(x)-0 as x++o00o. Thus we want to generate a basis from a function which will

decay to 0 relatively rapidly. i.e. we want little waves or wavelets.
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4.2 Wavelet Bases.

Let us begin by considering a generating function 1 which we will think of as our
mother wavelet or basic wavelet. The idea is that, just as with the sinusoids, we wish to
consider a superposition of dilations of the basic waveform . For technical convergence
reasons which we shall explain later we wish to consider dyadic dilations rather than
simply integral translations. Thus for the first pass, we are inclined to consider
P (x) =2j/21/)(2j/2x). Unfortunately, because of the decay of ¥ to 0 as x-+oo, the
elements {3;} are not sufficient to be a basis for Ly(R). We accommodate this by
adding translates to get the doubly indexed functions ¢; k(x)=21/ 2t/)(2jx--k). We
choose 1 such that

N 2
J Ml— dw exists.
R

Here 3 is the Fourier transform of 1. Under certain choices of ¥, ¥ ik forms a doubly
indexed orthonormal basis for Ly (actually also for Sobolev spaces of higher order as
well). As we shall see in the next section, a wavelet basis due to the dilation-translation
nature of its basis elements admits an interpretation of a simultaneous time-frequency
decomposition of f. Moreover using wavelets, fewer basis elements are required for
fitting sharp changes or discontinuities. This implies faster convergence in “non-

smooth” situations by the introduction of “localized” basis elements.

Example 3.1 Continued: Notice that
[o o} . .
23/ 2y 29x k) f(x) dx.
2y 2k

)

k= <hvje> =I

In the density estimation case

Cj,lc=E ( 2-7./2 ¢(2jx—-k))

€5k = il f:l‘”( 27x;~ k),
1=

where x;, 1 =1,...,n is the set of observations. Again we are simply using a method of

Thus a natural estimator is

moments estimator.

Notice that we can construct a Parseval’s Theorem for Wavelets.
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Theorem 4.2: (Parseval’s Theorem for Wavelets)

w2) un?=[ ta=  $ 1iul? 5 S SENTIML

J_--oo = :—oo]._.—oo

At this stage we are left with the problem of constructing an appropriate mother
wavelet, v, suitable for constructing the basis. To do this we turn to the device of

multiresolution analysis.

4.3 Multiresolution Analysis.

To understand multiresolution analysis let us first consider the construction of
space szspa.n{z/)j’ ¢ keJ}. That is we fix the dilation and consider the space
generated by all possible translates. We may write Lo(R) as a direct sum of the W,
Lo(R Z W so that any function f € Ly(R) may be written as

€d £(x) = -+ d _ (%) +dg(x) +dy(x) +-

where d ;€ \ i If ¥ 1s an orthogonal wavelet, then Wj LW,, k#j We shall assume
the unknown ¥ to be an orthogonal wavelet in what follows. Notice that as j increases,
the basic wavelet form y(27x - k) contracts representing higher “frequencies.” For each

J we may consider the direct sum V j given by:

V=t Wi+ W,

j=1
i—1= 2, Wn
m= —-—00
The V j are closed subspaces and represent spaces of functions with all “frequencies” at

or below a given level of resolution. The set of spaces {V j} has the following properties:

1) They are nested in the sense that Vj ng+ pJed.
2) Closure (U, ¢ ;V;) = Ly(R).
3) nJ.EJij{O}.
4) Vi 1=V;+W,
) f(x)eV;if and only if {(2x) €V |, jeJ.

1), 4) and 5) follow directly from the definition of V i 2) is a straightforward conse-
quence of the fact that U,ey Wj=L2(R). 3) follows because of the orthogonality

property.

Any fe Ly(R) can be projected into VJ-. As we have seen with j increasing the
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the “frequency” of the wavelet increases which can be interprel.l as higher resolution.
Thus the projection, Pf, of f into V; is an increasingly higher resolution approximation
to f as j»co. Conversely, as 3»—oo, P jf is an increasingly blurred (smoothed) approxi-
mation to f. We shall take V as the reference subsgice. Suppose now that we can find
a function ¢ and that we can define ¢j,k(x) = 2j/2¢(2jx — k) such that

VO = Spa-n{¢0’k: ke J}.

Then by property 5), V]- = span{¢ ik keJ}. While we began our discussion with the
notion of wavelets and have seen some of the consequences, we could have actually

begun a discussion with the function ¢.

Definition. A function ¢ generates a multiresolution analysis if it generates a nested
sequence of spaces having properties 1), 2), 3) and 5) such that {¢0,k’ keJ} forms a
basis for V. If so, then ¢ is called the scaling function.

For the final discussion of this section, let us consider a multiresolution analysis
in which {Vj} are generated by a scaling function ¢ € Lo(R) and {WJ} are generated by
a mother wavelet function ¥ € Lo(R). Any function fe€ Ly(R) can be approximated as
closely as desired by f,, for some sufficiently large meJ. Notize fp, =f, _,+d,,_;
where f, . _, €V _,andd,,_,eW_ _,. This process can be recursively applied say [
times until we have f=f,, =d,, _,+d, _. tootd _ +f ;. Notice that f _,isa
highly smoothed version of the function. Indeed, this suggests that a statistical
procedure might be to form a highly smoothed (even overly smoothed) approximation
to a function to be estimated. The sequence d,, _, through d,, ; {uim the higher
resolution wavelet approximations. Many of the wavelet coefficients Cm—ik used for
constructing d,, _;, = I,..., | are likely to be 0 and hence can contribute to a very
parsimonious representation of the function f. Indeed, a wavelet decomposition is a
natural suggestion for a technology for high definition television (HDTV). If f _,
represents the lower resolution conventional NTSC TV signal, then to reconstruct a
high resolution image all that is needed is the difference signal which could be
parsimoniously represented by the wavelet coefficients Cm—ik V= 1,...,l and ke J, most

of which would be 0.

Most importantly, however, is the observation that the scaling function ¢ €V,
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and the mother wavelet 1 € W implies that both are in V;. Since V| is generated by
¢y 1(x) = 21/2¢(2x — k), there are sequences {g(k)} and {h(k)} such that

(4.3) = Y g(k)¢(2x - k) and ¥(x = Y h(k)¢(2x - k).

keJ keJ
This remarkable result gives us a construction for the mother wavelet in terms of the
scaling function. These equations are called the two-scale difference equations. We can
give a time series interpretation to these equations. Lets consider an original discrete

time function, f(n), to which we apply the filter

=Y g(bi(2n-k).
keJ
First of all we note that there is a scale change due to subsampling by two, i.e. a shift
by two in f(n) results in a shift of one in y(n). The scale of y is only half that of f.
Otherwise this is a low pass filter with impulse response function g. Let us consider

iterating this equation so that

(4.4) y ()= Y gkyY ~Di2n-k).

kelJ
Notice that if this procedure converges, it converges to a fixed point which will be ¢.
This iterative procedure with repeated down sampling by two is suggestive of a method
for constructing wavelets. If g is a finite impulse response (FIR) filter of length [ the
counstruction of a complementary high-pass filter is accomplished with a FIR filter, h,
whose impulse response is given by h({-1-n) = (-1)" g(n). This scheme is called sub-

band coding in the electrical engineering literature. The low-pass band is given by

(4.5) z g(k)f(2n - k)
kelJ

while the high-pass band is given by

(4.6) yi(n) = Zh f(2n- k).

The filter impulses as defined form an orthonormal set so that the f may be

reconstructed by
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(4.7) f(n) = 3 [yo(k)g(2k~n) +y,(k)h(2k - n)].
KEJ

The sub-band coding scheme may be repeatedly applied to form the nested sequence pf
Vj. The nested sequence of {V j} is then essentially obtained by recursively
downsampling and filtering a function with a low-pass filter whose impulse response

function is g(-).

4.4 Construction of Scaling Functions and Mother Wavelets.

We have already hinted that the scaling function may be constructed as the
fixed point of the down-sampled, low-passed filter equation (4.4). This can be
formalized by considering what statisticians would call the generating function of g(n)

and what electrical engineers call the z-transform of g( - ).

(48) G@)=5 3 &(i) 7.
JjeldJ
Notice if z=e ™/ 2 then (4.8) is essentially the Fourier transform of the impulse

response function g(-). In this case, the first equation in (4.3) may be written as

-~

(4.9) 3(w) = G(2)H(%), with z = e~ W/2,

This, of course, follows because the Fourier transform of a convolution is the
corresponding product of the Fourier transforms. This recursive equation may be

iterated to obtain
. roky A
(4.10) d(w) = [ Gle™*/*") §(0).

We may take ¢ to be continuous and ¢(0) =1. Based on (4.10) we may recover ¢(-)
and based on this result, the equation h(l-1-n) =(-1)" g(n) and the second equation
of (4.3) we may recover the mother wavelet, ¥(-). Thus Daubechies’ original
construction shows that wavelets with compact support can be based on finite impulse
response filters which was originally motivated by multiresolution analysis. Theorem

4.3 below summarizes the general form of Daubechies’ result.
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Theorem 4.3: (Daubechies’ Wavelet Construction):

Let g(n) be a sequence such that
a. ¥ |g(n))|n|€<oo for some € >0,
neJ

b. ¥ g(n-2j) g(n-2k)=6]-k,
neld

C. E g(n):l
nelJ

Suppose that g(w) = G(e ™ 3.“'/2) =27 1/22 g(n) e ™ /2 can be written as
neJ
) =3 1+e VAN £ f(n) e ™™/
nelJ
where

d. 3 (f(n)]|n|€<oo for some € >0
nelJ

e. sup, (gl X nf(n) e—i"wﬂl <2N-1

Define
h(n) =(-1)" g(-n+1),
3w) iﬁlc(e-sum),

¥(x)= 3 h(K)g(2x - k).
keJ

Then the orthonormal wavelet basis is Vi determined by the mother wavelet 1.

Moreover, if g(n)=0 for [n| > n;, then the wavelets so determined have compact

support. O

We state this result without proof which may be found n Daubechies (1988). We
note that Daubechies also shows that the mother wavelet, ¥, cannot be an even function

and also have a compact support. The exception to this is the trivial constant function

which gives rise to the so-called Haar basis. Daubechies illustrates this computation

with the example of g given by g(0) = (1+v3)/8, g(1) = (3 +v3)/8, g(2) = (3-V3)/8

and, finally, g(3) = (1 - v/3)/8. This wavelet is illustrated in Figure 4.1.
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Figure 4.1b. Daubechies’ Mother Wavelet using 4-term FIR filter.
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5. Transient Signal Function Estimation.

Now with the basic construction of wavelets in hand, we can turn to the
transient signal processing application. = Wavelets have as one of their prime
applications transient signal processing. In particular, since the most effective wavelets
are those with compact support, they are a natural basis for transient signal estimation.
However, if we are to exploit them in the context of optimal nonparametric function
estimation, we must construct an optimality criterion for transient signals. The
discussion below outlines an approach to transient signal estimation set in the context of
optimal nonparametric function estimation. A fuller treatment can be found in Le and
Wegman (1992). We first consider signals. It is well-known that there is no non-zero
function in L,(R) which is both band-limited and time-limited. This being the case, we
will assume the signal to be hard band-limited, i.e. with no energy outside a fixed
interval, say [-v, v], but soft time-limited, i.e. with minimal energy in the tails. This

particular example demonstrates an elegant application of moments to signal processing.

5.1 Measuring of Out-of-Band Energy

Let L,(R) be the set of square-integrable, real-valued functions and let
h(t) € Ly(R). Denote by f(w) the Fourier transform of f(t) such that f e L,(R). We
assume { is frequency band-limited so that f(w)=0, for |w|>». We propose
approximating the class of band-limited time-transient functions by considering
functions whose energy time spread is confined to soine small level s,. As a measure of
the energy time-spread, we will use analogies to concepts from probability theory to
define various moments of |f(t)|2?, which plays the role of the emergy distribution

function. Assuming that
I 1617 16(t) |2 dt < o0, j=1,2, ..., k,

the k* moment of the energy distribution will now be defined as follows

ME = I tF |£(t)]? dt.

-0

For k =2, we have the 2nd moment of the energy distribution function as a measure of

the energy time spread, given as
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M2=J £2 [f(t) ]2 dt.

Remark: The factor t* serves as a weight on the energy function which is used to
control the degree of spreading in |f(t)|. A larger k value implies that more weight is
applied at the tail-end of the energy distribution function and, therefore, the process of

minimizing Mk requires that more energy be centrally concentrated.

5.2 Optimal Estimation of Band-Limited Processes

For -v and v real numbers, and m and p integers, where —00 < —v < v < o0, and
m>0 and p>1, the Sobolev space W™?[-v, v] of complex-valued functions f on

[ -v, v] is given by:
WPy, v] = {f(w): ?(k)(w) ,k=0,1,..., m-1, are absolutely continuous
v
[ | T (w)|? dw < oo},

We consider observing an actual process, r(t), and we let f(w) be the Fourier transform
of the observed process, r(t). The Fourier transform of the observed process, r(t), will
then be modeled as f(w) = g(w) + {(w) where, £(w) is the spectrum of a stationary noise
process, g(w) € W™ -v, v]. The fact that { belongs to the class W™ 2 - »,1] of band-
limited signals implies that the support of |f(t)|? is not bounded. The objective is,
then, to find a function f(w) € W™?[-v,v] which best fits the Fourier transform f(w) of
the observed process r(t) with minimum time-energy spread; specifically we would like
to minimize the following functional with k< m

(5.1) _ min (3 (F(w,)-F(w;))?] subject to It”‘lf()|’dtgso,
few™-vy] =1

where f(t) is the inverse Fourier transform corresponding to f(w) in ¥™3[-v, v].

5.3 Moment Connection via Parseval’s Theorem
A rather elegant extension of Parseval’'s Theorem can be constructed under
appropriate regularity conditions. The Parseval’s Theorem for continuous Fourier trans-

form pairs is
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Iu_yﬁ(w)ﬂ dw:%ﬂm 1£(t) |2 dt.

-0
But we know

flw) =2 j°° f(t) e ~ ¥t dt
=3r) .

Take k! derivatives with respect to w

ot o —itw
a‘i‘;’Z:fl,_rj C (e
so that

fBw) = 0" (w)

.~ is the Fourier transform of (—it)* f(t).

Jw

We can apply Parseval’s Theorem to this Fourier transform pair to obtain
Theorem 5.1:
v N 0
J 1T (W) 12 dw =.2l_j t2%1£(t) 2 dt. O
-y n

— 00

Thus, o1r optimization problem (5.1) can now be reformulated as

174
(5.2) _ min (> (f(wj) ~ f(w;))? ] subject to I 1T*)(w) |2 dw < 53
few™Y-—vy] =t =

Using standard Lagrange multiplier techniques, this in turn may be reformulated

v

(5.3) _ min (32 (B(w;) -, j 1T0(w) 1?2 dw ).

few™Y -y, v j=1 2
Indeed expression (5.3) is the form of optimization problem which results in a solution
which is a generalized polynomial spline of degree 2k—1. This result may be
substantially generalized by the theorem given below which is developed in Le and
Wegman (1992).

Theorem 5.2: Let g(w) be a band-limited spectral process with transient inverse Fourier

transform and f(w) be the observed spectral process defined over some finite band

-v<w<v. We model this spectral process as
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f(w) = g(w) +£(w)

where £(w) is some stationary white noise process. Let A be the time spread measure,
defined as follows:
A) = a0 () + (D)

+o0

M) = £ ] t2%(t) |2 dt,

—Q0

where,

and where ay and a, are the appropriately chosen weights. Here f is the inverse Fourier
transform of f belonging to L,(R). Then, the optimal band-limited representation in the

Sobolev space W™ ?[ - v,] is f,(w) where f,(w) is the solution to the problem:

_ minimize i [f(w,) -f(w;)]* + () .
few™ vy =1

f, is a generalized L-spline, and ) is known as the smoothing parameter. O

For a general discussion of L-splines, see Wegman and Wright (1983). Notice
that if A(f) = A.(f) for some large k, then we are constructing a band-limited transient
signal estimator with little energy in the tail of the signal estimate, f,, where f, is the

inverse Fourier transform of tfi\. If k=2, then

+oo v

A = & j ¢4 1£(t) |2 dt = j 1T?(w) |2 dw

and our solution is the weil-known cubic spline. However, much more interesting and
physically meaningful solutions may be found. If A(f)= agho(f) +a,A,(f), then for k
odd 400

A(F) = 2,{’] I£(t )|’dt+alj t'"'|f(t)|’dt}

Thus, we may also want to impose a total energy restriction on the estimated signal
space. This imposed restriction may, for example, have resulted from a requirement to
minimize channel bandwidth utilization from data transmission systems. Such

modification, thus, yields the following optimization problem for k odd
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n n 1 4 . v N
o omin [ 3 Fw) - fw@))P 4 h [ 1) e+, [ 1 TPw) P ),
few™3—vy) 1=1 “v v

Hence, by our theorem the optimal solution is again an L-spline.

5.4 Computing Band-limited Transient Estimators and Example

The rather elegant result that our band-limited transient estimators are
generalized L-splines makes the numerical computation of the estimators rather more
routine since algorithms already exist for computing L-splines. The fact that we can
impose total energy limits as well as tail-energy limits is an unexpected bonus. Our
interpretation of Theorem 5.2 is as follows. We recommend doing an initial spectral
estimation to establish the bandwidth, —v < w < v, over which we want to estimate g(w)
(or more precisely the signal, g(t), its inverse Fourier transform). This initial spectral

estimate will also allow us to select the sampling frequencies, w,, We recommend

5
selecting these w; as the frequencies with the largest spectral mass. Notice that we may
regard a transient signal, g(t), as the product of a signal of infinite support with an
indicator function of a closed interval. It is well-known that Fourier transform of an
indicator function is the so-called Dirichlet kernel which has a large central lobe and
decreasing side lobes. By choosing sampling frequencies w; at the location of the central
and side lobes, our technique allows us to to recover the indicator to an excellent
approximation. Thus not cnly do we estimate the transient signal because of the
penalty term for out-of-band energy, but because of the choice of sampling frequencies

as well. Figure 5.1 graphically illustrates the results of our technique.
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Title: Applications of Moments in Statistics and Probability

Lunch Break

Session3 Chair: C. Therrien, NPS

Speaker: J. Mendel, University of Southern California

Title: Recent Applications of Higher Order Statistics to Speech
Processing and Array Processing

Coffee Break

Session4 Chair: P. Purdue, NPS

Speaker: S. Iyengar, University of Pittsburgh

Title: Prob. yility Calculations for Multivariate Pearson
Families

“Social Hour,” La Novia Terrace, Herrmann Hall
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Tuesday, 31 March 1992

(All sessions will be held in RM 1014, Spanagel Hall, Naval Postgraduate School.)

0900-1030:

1030-1100:

1100-1250:

1230-1400:

1400-1530:

1530-1600:

1600-1730:

1730-1800:

Session 5 Chair: H. Solomon, Stanford

Speaker: M. Nikias, University of Southern California
Title: Blind Deconvolution using Higher-order Statistics
Coffee Break

Session 6 Chair: P. Jacobs, NPS

Speaker:
Title:

E. Wegman, George Mason University
A Spectral Representation for the Class Band-limited
Functions

Lunch Break

Session 7 Chair: L. Whitaker, NPS

Speaker:
Title:

B. Lindsay, Penn State University
Moment-based Oscillation Properties of Mixture Models

Coffee Break

Session 8 Chair: P. Lewis, NPS

Speaker:
Title:

K-S Lii, U.S. Riverside
Nonlinear Discrimination within the Higher Order
Cumulant Structure

Final Remarks: P. Purdue

H. Sclomon
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